GPT:生成式自回归模型

GPT:生成式自回归模型

1.背景介绍

1.1 自然语言处理的发展历程

1.1.1 早期的规则与统计方法
1.1.2 神经网络与深度学习的兴起
1.1.3 Transformer 架构的突破

1.2 语言模型的重要性

1.2.1 语言模型的定义与作用
1.2.2 传统的 N-gram 语言模型
1.2.3 神经网络语言模型的优势

1.3 GPT 模型的诞生

1.3.1 GPT 的研发背景
1.3.2 GPT 的创新点与突破
1.3.3 GPT 系列模型的演进

2.核心概念与联系

2.1 Transformer 架构

2.1.1 自注意力机制
2.1.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值