联邦学习 (Federated Learning) 原理与代码实例讲解
1.背景介绍
随着数据隐私和安全问题的日益突出,传统的集中式机器学习方法面临着巨大的挑战。数据的集中存储和处理不仅增加了数据泄露的风险,还可能违反数据保护法规。联邦学习(Federated Learning)作为一种新兴的分布式机器学习方法,能够在不共享原始数据的情况下,协同多个数据源进行模型训练,从而有效地解决了数据隐私和安全问题。
联邦学习最早由Google在2016年提出,旨在通过分布式的方式进行模型训练,使得数据可以留在本地设备上,而只需共享模型参数。这样既能保护用户隐私,又能充分利用分散的数据资源进行模型优化。
2.核心概念与联系
2.1 联邦学习的定义
联邦学习是一种分布式机器学习方法,允许多个参与方在不共享原始数据的情况下,协同训练一个全局模型。每个参与方仅需将本地模型的更新(如梯度或权重)发送到中央服务器,中央服务器汇总这些更新后更新全局模型。
2.2 联邦学习的类型
联邦学习主要分为三种类型:
- 横向联邦学习(Horizontal Federated Learning):参与方的数据集具有相同的特征空间,但样本不同。
- 纵向联邦学习(Vertical Federated Learning):参与方的数据集具有相同的样本,但特征空间不同