联邦学习 (Federated Learning) 原理与代码实例讲解

联邦学习 (Federated Learning) 原理与代码实例讲解

1.背景介绍

随着数据隐私和安全问题的日益突出,传统的集中式机器学习方法面临着巨大的挑战。数据的集中存储和处理不仅增加了数据泄露的风险,还可能违反数据保护法规。联邦学习(Federated Learning)作为一种新兴的分布式机器学习方法,能够在不共享原始数据的情况下,协同多个数据源进行模型训练,从而有效地解决了数据隐私和安全问题。

联邦学习最早由Google在2016年提出,旨在通过分布式的方式进行模型训练,使得数据可以留在本地设备上,而只需共享模型参数。这样既能保护用户隐私,又能充分利用分散的数据资源进行模型优化。

2.核心概念与联系

2.1 联邦学习的定义

联邦学习是一种分布式机器学习方法,允许多个参与方在不共享原始数据的情况下,协同训练一个全局模型。每个参与方仅需将本地模型的更新(如梯度或权重)发送到中央服务器,中央服务器汇总这些更新后更新全局模型。

2.2 联邦学习的类型

联邦学习主要分为三种类型:

  • 横向联邦学习(Horizontal Federated Learning):参与方的数据集具有相同的特征空间,但样本不同。
  • 纵向联邦学习(Vertical Federated Learning):参与方的数据集具有相同的样本,但特征空间不同
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值