误差逆传播 (Backpropagation)

误差逆传播 (Backpropagation)

1.背景介绍

误差逆传播(Backpropagation)是深度学习和神经网络领域的核心算法之一。它的出现极大地推动了人工智能的发展,使得复杂的神经网络能够高效地进行训练。误差逆传播算法通过计算神经网络输出与期望输出之间的误差,并将误差反向传播到网络的每一层,从而调整网络的权重和偏置,使得网络能够更好地拟合数据。

2.核心概念与联系

2.1 神经网络基础

神经网络由多个神经元(节点)组成,这些神经元通过权重连接形成层。每个神经元接收输入信号,经过加权求和和激活函数处理后,输出信号传递到下一层神经元。

2.2 前向传播

前向传播是指输入数据通过神经网络层层传递,最终得到输出结果的过程。在这个过程中,输入数据经过每一层的加权求和和激活函数处理,逐层传递到输出层。

2.3 误差计算

误差是指神经网络输出与期望输出之间的差异。常用的误差度量方法包括均方误差(MSE)和交叉熵损失(Cross-Entropy Loss)。

2.4 反向传播

反向传播是指将误差从输出层逐层传递回输入层的过程。在这个过程中,计算每一层的误差对权重和偏置的梯度,并根据这些梯度调整权重和偏置。

3.核心算法原理具体操作步骤

3.1 初始化权

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值