误差逆传播 (Backpropagation)
1.背景介绍
误差逆传播(Backpropagation)是深度学习和神经网络领域的核心算法之一。它的出现极大地推动了人工智能的发展,使得复杂的神经网络能够高效地进行训练。误差逆传播算法通过计算神经网络输出与期望输出之间的误差,并将误差反向传播到网络的每一层,从而调整网络的权重和偏置,使得网络能够更好地拟合数据。
2.核心概念与联系
2.1 神经网络基础
神经网络由多个神经元(节点)组成,这些神经元通过权重连接形成层。每个神经元接收输入信号,经过加权求和和激活函数处理后,输出信号传递到下一层神经元。
2.2 前向传播
前向传播是指输入数据通过神经网络层层传递,最终得到输出结果的过程。在这个过程中,输入数据经过每一层的加权求和和激活函数处理,逐层传递到输出层。
2.3 误差计算
误差是指神经网络输出与期望输出之间的差异。常用的误差度量方法包括均方误差(MSE)和交叉熵损失(Cross-Entropy Loss)。
2.4 反向传播
反向传播是指将误差从输出层逐层传递回输入层的过程。在这个过程中,计算每一层的误差对权重和偏置的梯度,并根据这些梯度调整权重和偏置。