无监督学习 原理与代码实例讲解

无监督学习 原理与代码实例讲解

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:

  • 无监督学习
  • 自组织
  • 特征学习
  • 聚类
  • 维度降维

1. 背景介绍

1.1 问题的由来

随着大数据时代的到来,数据量呈爆炸式增长,如何有效地处理和利用这些数据成为了人工智能领域的重要课题。无监督学习作为机器学习的一个重要分支,旨在从无标签数据中寻找结构、模式和关联性,为数据探索、异常检测、推荐系统等领域提供了有力工具。

1.2 研究现状

近年来,无监督学习取得了显著的进展,涌现出许多优秀的算法和模型。从经典的聚类算法K-means、层次聚类到新兴的深度学习模型如自编码器(Autoencoder)、生成对抗网络(GAN)等,无监督学习在理论和应用方面都取得了丰硕的成果。

1.3 研究意义

无监督学习具有以下意义:

  • 数据探索:从无标签数据中发现潜在的结构和模式,帮助理解数据分布。
  • 降维:将高维数据降至低维空间,便于分析和可视化。
  • 异常检测:识别数据中的异常值,为数据清洗和预处理提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值