无监督学习 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:
- 无监督学习
- 自组织
- 特征学习
- 聚类
- 维度降维
1. 背景介绍
1.1 问题的由来
随着大数据时代的到来,数据量呈爆炸式增长,如何有效地处理和利用这些数据成为了人工智能领域的重要课题。无监督学习作为机器学习的一个重要分支,旨在从无标签数据中寻找结构、模式和关联性,为数据探索、异常检测、推荐系统等领域提供了有力工具。
1.2 研究现状
近年来,无监督学习取得了显著的进展,涌现出许多优秀的算法和模型。从经典的聚类算法K-means、层次聚类到新兴的深度学习模型如自编码器(Autoencoder)、生成对抗网络(GAN)等,无监督学习在理论和应用方面都取得了丰硕的成果。
1.3 研究意义
无监督学习具有以下意义:
- 数据探索:从无标签数据中发现潜在的结构和模式,帮助理解数据分布。
- 降维:将高维数据降至低维空间,便于分析和可视化。
- 异常检测:识别数据中的异常值,为数据清洗和预处理提供支持。