前端控件宝典:UI组件的完整指南(60)——横向柱状图【源码在文末并附解释】

本文探讨了前端控件在Web开发中的重要性,涵盖了自定义控件的原理、用户控件的区别,以及如何使用ECharts创建交互式柱状图。通过实例学习,提升Web开发技能和用户体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在当今数字时代,Web应用程序已经成为我们生活的重要组成部分。无论是社交媒体平台、电子商务网站还是在线工具,现代Web应用程序的核心是其用户界面(UI)。而用户界面的关键组成部分之一就是前端控件。

前端控件是Web开发中不可或缺的元素,它们为我们提供了构建各种交互性和功能丰富的Web应用程序的工具。无论您是一名新手前端开发者还是经验丰富的工程师,了解和掌握前端控件都是提高Web开发技能的关键。

本博客系列将带您深入探索前端控件的世界。我们将详细研究各种UI组件,从简单的按钮和表单控件到复杂的图表和地图集成,无所不包。无论您是想要提高自己的技能,还是寻找构建令人印象深刻的用户体验的方法,这个系列都将为您提供宝贵的知识。

在接下来的几篇文章中,我们将探讨不同类型的前端控件,讨论它们的用途、最佳实践和实际示例。无论您的兴趣是构建漂亮的UI、提高用户体验或学习最新的Web开发技术,这个系列都将有所帮助。

准备好探索前端控件的魅力吗?让我们开始吧!

一,演示地址

访问网址:http://59.110.22.223:8080/Model_qianduan/dataset_bar_1.html

image-20230915095732639

二、控件常识

自定义控件
自定义控件是已编译的服务器端控件,它将用户界面和其他功能都封装起来到可复用的包中,自定义控件和标准的控件相比,除了他们一个不同的标记前缀,并且必须进行显示注册和部署以外并没有什么不同。此外,自定义控件拥有自己的对象模型,能够触发事件,并支持Microsoft Visual Studio 的所有设计是特性,诸如属性窗口、可视化设计器、属性生成器和工具箱。

上面讲了用户控件,它只需要想创建页面一样,在设计器里拖拉系统控件设计界面,然后为这些控件添加必须的事件代码就可以,它纯粹就是组合。而自定义控件是“从头实现”控件的底层功能,编写一个类继承自Control,并实现INamingContainer接口,甚至重写控件的Render方法,控制控件生成的html代码,以及实现响应从浏览器传回数据的事件和处理传回的数据,它不仅叫自定义控件,也可以叫做复合控件。

自定义控件使用的时候,可以点击vs软件右边上的工具箱,在工具箱上空白处点击右键选择项–在.NET Framework组件选项卡下点击“浏览”–找到你要添加的自定义控件(.dll文件)–打开–确定。这样你就可以在工具箱中将那个自定义控件拖出来使用了。常用的控件有:分页控件、文本编辑器、水晶报表、ActiveReports等。

开发方法:
1、自定义控件的开发,即继承如Control的积累实现服务器控件。

​ 2、开发用户控件。

创建用户控件与创建普通asp.net web页面类似,但是还是有些不同。步骤是:

① 创建一个.ascx的文本文件。这是用户控件和asp.net web页面的第一个不同点,后者使用的扩展名为.aspx。

②在文本文件顶部添加@Control指令,并通过language属性来设置所选择的编程语言,这是用户控件和web页面的第二个不同点。(后者使用@page指令)。

③向文本文件添加HTML标记文本和asp.net服务器控件。可以添加html、body和form之外的任何html标记,这是因为用户控件不能单独使用,必须做为web页面的一部分使用。这是用户控件和web页面的第三个不同点。

三,源码

<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8">
    <title>Awesome-pyecharts</title>
                <script type="text/javascript" src="https://assets.pyecharts.org/assets/v5/echarts.min.js"></script>

</head>
<body >
    <div id="1ccfe54281744b72a87d0a72767232e1" class="chart-container" style="width:900px; height:500px; "></div>
    <script>
        var chart_1ccfe54281744b72a87d0a72767232e1 = echarts.init(
            document.getElementById('1ccfe54281744b72a87d0a72767232e1'), 'white', {renderer: 'canvas'});
        var option_1ccfe54281744b72a87d0a72767232e1 = {
    "animation": true,
    "animationThreshold": 2000,
    "animationDuration": 1000,
    "animationEasing": "cubicOut",
    "animationDelay": 0,
    "animationDurationUpdate": 300,
    "animationEasingUpdate": "cubicOut",
    "animationDelayUpdate": 0,
    "aria": {
        "enabled": false
    },
    "color": [
        "#5470c6",
        "#91cc75",
        "#fac858",
        "#ee6666",
        "#73c0de",
        "#3ba272",
        "#fc8452",
        "#9a60b4",
        "#ea7ccc"
    ],
    "series": [
        {
            "type": "bar",
            "name": "2015",
            "legendHoverLink": true,
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "bar",
            "name": "2016",
            "legendHoverLink": true,
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "bar",
            "name": "2017",
            "legendHoverLink": true,
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        }
    ],
    "legend": [
        {
            "data": [
                "2015",
                "2016",
                "2017"
            ],
            "selected": {},
            "show": true,
            "padding": 5,
            "itemGap": 10,
            "itemWidth": 25,
            "itemHeight": 14,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "borderRadius": 0,
            "pageButtonItemGap": 5,
            "pageButtonPosition": "end",
            "pageFormatter": "{current}/{total}",
            "pageIconColor": "#2f4554",
            "pageIconInactiveColor": "#aaa",
            "pageIconSize": 15,
            "animationDurationUpdate": 800,
            "selector": false,
            "selectorPosition": "auto",
            "selectorItemGap": 7,
            "selectorButtonGap": 10
        }
    ],
    "tooltip": {
        "show": true,
        "trigger": "item",
        "triggerOn": "mousemove|click",
        "axisPointer": {
            "type": "line"
        },
        "showContent": true,
        "alwaysShowContent": false,
        "showDelay": 0,
        "hideDelay": 100,
        "enterable": false,
        "confine": false,
        "appendToBody": false,
        "transitionDuration": 0.4,
        "textStyle": {
            "fontSize": 14
        },
        "borderWidth": 0,
        "padding": 5,
        "order": "seriesAsc"
    },
    "xAxis": [
        {
            "type": "category",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "inverse": false,
            "offset": 0,
            "splitNumber": 5,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        }
    ],
    "yAxis": [
        {
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "inverse": false,
            "offset": 0,
            "splitNumber": 5,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        }
    ],
    "dataset": [
        {
            "source": [
                [
                    "product",
                    "2015",
                    "2016",
                    "2017"
                ],
                [
                    "Matcha Latte",
                    43.3,
                    85.8,
                    93.7
                ],
                [
                    "Milk Tea",
                    83.1,
                    73.4,
                    55.1
                ],
                [
                    "Cheese Cocoa",
                    86.4,
                    65.2,
                    82.5
                ],
                [
                    "Walnut Brownie",
                    72.4,
                    53.9,
                    39.1
                ]
            ]
        }
    ],
    "title": [
        {
            "show": true,
            "text": "Dataset simple bar example",
            "target": "blank",
            "subtarget": "blank",
            "padding": 5,
            "itemGap": 10,
            "textAlign": "auto",
            "textVerticalAlign": "auto",
            "triggerEvent": false
        }
    ]
};
        chart_1ccfe54281744b72a87d0a72767232e1.setOption(option_1ccfe54281744b72a87d0a72767232e1);
    </script>
</body>
</html>

四,源码解释

这段HTML和JavaScript代码创建了一个柱状图(Bar Chart),用于可视化不同产品在2015、2016和2017年的销售情况。以下是代码的详细解释:

  1. <!DOCTYPE html>: 声明文档类型,表示这是一个HTML5文档。

  2. <html>: HTML文档的根元素。

  3. <head>: 包含文档的元信息和引用外部资源的部分。

  4. <meta charset="UTF-8">: 设置文档的字符编码为UTF-8,以确保文本可以正确显示。

  5. <title>Awesome-pyecharts</title>: 设置网页的标题为 “Awesome-pyecharts”。

  6. <script>: 引入了ECharts图表库的JavaScript文件,该文件的路径是 “https://assets.pyecharts.org/assets/v5/echarts.min.js”。这个库用于创建交互式图表。

  7. <body>: HTML文档的主体部分。

  8. <div id="1ccfe54281744b72a87d0a72767232e1" class="chart-container" style="width:900px; height:500px; "></div>: 创建一个 <div> 元素,用于容纳图表,并设置了该 <div> 的ID为 “1ccfe54281744b72a87d0a72767232e1”。此 <div> 的样式设置了宽度为900像素,高度为500像素。

  9. <script>: 包含了JavaScript代码,用于创建和配置柱状图。

    • var chart_1ccfe54281744b72a87d0a72767232e1 = echarts.init(document.getElementById('1ccfe54281744b72a87d0a72767232e1'), 'white', {renderer: 'canvas'});:创建一个ECharts图表实例,指定要渲染到的 <div> 元素的ID为 “1ccfe54281744b72a87d0a72767232e1”,设置背景颜色为白色,渲染方式为canvas。

    • var option_1ccfe54281744b72a87d0a72767232e1 = { ... }:定义了图表的配置选项。这包括图表的动画、颜色、系列(这里是柱状图的数据系列)、图例、提示框以及X和Y轴的设置。

  10. chart_1ccfe54281744b72a87d0a72767232e1.setOption(option_1ccfe54281744b72a87d0a72767232e1);:将上述定义的图表配置选项应用到图表实例,以渲染柱状图。

  11. </body>: HTML文档的主体部分结束。

  12. </html>: HTML文档的根元素结束。

这段代码的主要目的是创建一个带有交互功能的柱状图,用于可视化产品销售数据。你可以通过修改option_1ccfe54281744b72a87d0a72767232e1对象中的数据和配置选项来自定义图表的外观和行为。在这个示例中,数据源包含了四种产品在三个年份的销售数量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值