cs224u 自然语言推理:任务和数据集-1

自然语言推理(NLI)是一项预测文本间逻辑关系的任务,对各种推理至关重要。本文介绍了NLI任务背景,重点讨论了斯坦福自然语言推理(SNLI)和多语体NLI语料库,包括其数据来源、属性和使用工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cs224u 自然语言推理:任务和数据集-1 nli_01_task_and_data.ipynb

__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Fall 2020"

概述

自然语言推断(Natural Language Inference,NLI)是预测单词、短语、句子、(段落、文档等)之间的逻辑关系的任务。这种关系对于用自然语言进行的各种推理是至关重要的:辩论、解决问题、总结等等。
Dagan等人(2006)提出NLI的基础论文之一(也称为识别文本蕴涵;RTE),为这个任务在NLU中的普遍性提出一个案例:根据多个应用程序需要的主要推论,可以根据文本蕴涵进行转换。例如,QA问答系统必须识别包含假设答案的文本。类似地,对于某些信息检索查询,应该从相关检索文档中导出查询所表示的语义概念和关系的组合。在多文件摘要中,从摘要中省略一个多余的句子,应该从摘要中的其他句子中引出来。在机器翻译评估中,一个正确的翻译应该在语义上与“标准译本”翻译对等,因此两者应该相互包含。因此,我们假设文本蕴涵识别是评价和比较所应用的语义推理模型的一种合适的通用任务。最终可以促进隐含识别“引擎”的开发,它可以提供跨应

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值