半精度模型(16位)解析

在我们深入了解量化本身之前,先来谈谈一个触手可及的简单方法:将模型保持为半精度模型!

半精度模型(16位)

在本次内容的开头,我们已经详细讨论了FP32、FP16以及新出现的BF16之间的区别。到这里,你可能会想要以FP16格式加载模型,或者如果你的GPU支持的话,会选择BF16(以获得完整的数值范围),对吗?

“是的,但我怎么知道我的GPU是否支持这种高级的BF16类型呢?”

很高兴你问了这个问题!PyTorch的CUDA模块有一个名为is_bf16_supported()的方法,它能准确告诉你答案。实际上,从一开始就确定你要使用的16位数据类型,可能是个不错的主意:

supported = torch.cuda.is_bf16_supported(including_emulation=False)
dtype16 = (<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值