《Spark商业案例与性能调优实战100课》第1课:商业案例之通过RDD实现分析大数据电影点评系统中电影的用户行为信息

本课程聚焦Spark商业案例,以电影点评系统为例,利用RDD处理大数据中的用户行为信息。介绍中提到了Spark 2.1.0的新特性,包括watermarks概念,该特性允许延迟数据按正确时间处理,以及Spark Streaming作为服务服务器的角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Spark商业案例与性能调优实战100课》第1课:商业案例之通过RDD实现分析大数据电影点评系统中电影的用户行为信息

英语学习: 

http://www.npr.org/


spark2.1.0 新特点

1,watermarks

spark2.1.0 官方称从goole学习到的,或者从flink学的
发送数据延迟到达,数据将放到正确的时间。如12点发送,1点收到,将按照12点的水印时间来处理。


2,Spark Streaming可以被看做一个服务的Server


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值