论文阅读:Unsupervised Gene-Cell Collective Representation Learning with Optimal Transport (AAAI-24)

Yu, J., Chen, N., Gao, M., Li, X., & Wong, K.-C. . (2024). Unsupervised Gene-Cell Collective Representation Learning with Optimal Transport. Proceedings of the AAAI Conference on Artificial Intelligence38(1), 356-364. https://doi.org/10.1609/aaai.v38i1.27789

Unsupervised Gene-Cell Collective Representation Learning with Optimal Transport | Proceedings of the AAAI Conference on Artificial Intelligence


这篇论文和论文阅读:ZINB-Based Graph Embedding Autoencoder for Single-Cell RNA-Seq Interpretations-CSDN博客以及论文阅读:Unsupervised Deep Embedded Fusion Representation of Single-Cell Transcriptomics (AAAI-23)-CSDN博客

有共同作者,研究方向一致,可以一起学习一下。


摘要

细胞类型识别在单细胞RNA测序(scRNA-seq)数据分析中起着至关重要的作用。尽管已经提出了许多用于聚类scRNA-seq数据的深度嵌入方法,但它们仍然未能揭示细胞和基因的内在特性。本文提出了一种新颖的端到端深度图聚类模型,scGCOT(a novel end-to-end deep graph clustering model for single-cell transcriptomics data based on unsupervised G

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值