Yu, J., Chen, N., Gao, M., Li, X., & Wong, K.-C. . (2024). Unsupervised Gene-Cell Collective Representation Learning with Optimal Transport. Proceedings of the AAAI Conference on Artificial Intelligence, 38(1), 356-364. https://doi.org/10.1609/aaai.v38i1.27789
这篇论文和论文阅读:ZINB-Based Graph Embedding Autoencoder for Single-Cell RNA-Seq Interpretations-CSDN博客以及论文阅读:Unsupervised Deep Embedded Fusion Representation of Single-Cell Transcriptomics (AAAI-23)-CSDN博客
有共同作者,研究方向一致,可以一起学习一下。
摘要
细胞类型识别在单细胞RNA测序(scRNA-seq)数据分析中起着至关重要的作用。尽管已经提出了许多用于聚类scRNA-seq数据的深度嵌入方法,但它们仍然未能揭示细胞和基因的内在特性。本文提出了一种新颖的端到端深度图聚类模型,scGCOT(a novel end-to-end deep graph clustering model for single-cell transcriptomics data based on unsupervised G