FairAdaBN论文速读

本文探讨了深度学习模型在医疗中的不公平性问题,提出FairAdaBN方法,结合适应性批标准化和新损失函数,旨在提高模型公平性的同时保持良好性能。还引入了FATE度量来评估这种权衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FairAdaBN: Mitigating Unfairness with Adaptive Batch Normalization and Its Application to Dermatological Disease Classification

摘要

深度学习在医疗研究和应用中变得越来越普遍,同时涉及敏感信息和关键诊断决策。研究人员观察到不同人口统计属性子组之间的性能差异显著,这被称为模型不公平性,并投入大量精力精心设计优雅的架构来解决不公平性,这带来了沉重的训练负担,带来了糟糕的泛化能力,并揭示了模型性能和公平性之间的权衡。

本文提出了一种使批标准化适应于敏感属性的方法,即FairAdaBN。可以适应几种原来不知道公平性的分类主干。此外,我们推导出一个新的损失函数,该函数限制了小批量上的子组之间的统计平衡,鼓励模型在收敛时具有相当的公平性。为了评估模型性能和公平性的权衡,我们提出了一种新的度量方法,称为公平性准确性权衡效率(FATE),用于计算公平性改进的标准化精度下降。

代码地址

本文方法

在这里插入图片描述
损失函数如下:
在这里插入图片描述

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值