文章目录
TauFlowNet: Uncovering Propagation Mechanism of Tau Aggregates by Neural Transport Equation
摘要
-
问题背景:
- 阿尔茨海默病(AD)以类似朊样物质的方式在大脑中传播Tau聚集物为特征。
- 对广泛的Tau聚集物的时空传播模式进行了分析,但研究侧重于焦点模式的变化,而非系统级理解。
-
研究构想:
- 将细胞间Tau病理传播视为动态系统,大脑区域与其他节点相连,同时与病理负担积累相互作用。
- 制定基于势能传输模型的Tau传播生物过程,允许从纵向Tau-PET图像中揭示Tau传播的时空动态。
-
方法介绍:
- 将传输方程转化为图神经网络(GNN)的骨干,其中传播流由每个节点处Tau积累的势能驱动。
- 引入总变差(TV)以防止流量消失,基于系统的欧拉-拉格朗日方程最大化传播流并最小化总体势能。
-
模型设计:
- 设计生成对抗网络(GAN)来描绘基于TV的Tau聚集物传播流,被称为TauFlowNet。
-
实验评估:
- 在ADNI数据集上评估TauFlowNet的预测准确性,并探索Tau聚集物随疾病进展的传播机制。
-
结果比较:
- 相较于当前方法,基于物理的方法产生了更准确和可解释的结果,展示了在发现新的神经生物学机制方面具有巨大潜力。
方法
图1(a):Tau在大脑网络中的传播促进了疾病进展中Tau聚集物的积累。
图1(b):展示了基于焦点模式变化估计Tau聚集物传播流的计算挑战的示意图。
标准摄取值比率(Standard Uptake Value Ratio,SUVR)
问题阐述
神经科学假设:我们的大脑通过高效的信息交换促进了有毒的tau蛋白快速在整个大脑中传播。要理解这种传播,必须测量tau蛋白聚集物在复杂的大脑网络中的内在信息流量(如通量和带宽)。
从机器学习的角度提出问题:
总体目标是估算时间相关的流场f(t),表示tau传播的流动,使得xi(t + 1) = xi(t) + ΣN_j=1fij(t),其中fij(t)代表从区域vi到vj的有向流动。如图1(b)中的示例所示,给定纵向变化x,F有许多可能的解。为了将这个问题转化为一个明确定义的问题,我们构想大脑中的每一处tau传播形成了一个独特的动态传输系统,传播流是由tau特定的势能场驱动的,其中ui(t)是对底层区域vi处tau积累xi的非线性过程φ的输出,即ui = φ(xi)。势能场驱动大脑中tau聚集物的流动,类似于重力场驱动水流。因此,tau的传播被定义为相连区域之间势能梯度。
因此,我们模型的基本见解是,传播流fij(t)被构建为tau势能场的“能量传输”过程。综合而言,我们模型的输出是动态系统的机械方程M(·),它可以基于历史流动序列预测未来的流动。
tau在大脑中传播的运输方程:
其中q是势能u的通量(守恒量)。方程2的直觉是能量密度的变化(由区域tau SUVR x测量)导致了整个大脑的能量传输(由PEF的通量测量)。由于通量通常被定义为流动的速率,我们进一步定义能量流为qij = α · fij,其中α是一个可学习的参数,用于表征tau流fij对势能通量qij的贡献。将ut = φ(xt)和qij = α · fij代入方程2,tau传播流f的能量传输过程可以描述为:
TauFlowNet: An Explainable Deep Model Principled with TV-Based Lagrangian Mechanics
实验结果