“TauFlowNet:通过神经传输方程揭示Tau聚集物的传播机制“论文速读

TauFlowNet: Uncovering Propagation Mechanism of Tau Aggregates by Neural Transport Equation

摘要

  1. 问题背景

    • 阿尔茨海默病(AD)以类似朊样物质的方式在大脑中传播Tau聚集物为特征。
    • 对广泛的Tau聚集物的时空传播模式进行了分析,但研究侧重于焦点模式的变化,而非系统级理解。
  2. 研究构想

    • 将细胞间Tau病理传播视为动态系统,大脑区域与其他节点相连,同时与病理负担积累相互作用。
    • 制定基于势能传输模型的Tau传播生物过程,允许从纵向Tau-PET图像中揭示Tau传播的时空动态。
  3. 方法介绍

    • 将传输方程转化为图神经网络(GNN)的骨干,其中传播流由每个节点处Tau积累的势能驱动。
    • 引入总变差(TV)以防止流量消失,基于系统的欧拉-拉格朗日方程最大化传播流并最小化总体势能。
  4. 模型设计

    • 设计生成对抗网络(GAN)来描绘基于TV的Tau聚集物传播流,被称为TauFlowNet。
  5. 实验评估

    • 在ADNI数据集上评估TauFlowNet的预测准确性,并探索Tau聚集物随疾病进展的传播机制。
  6. 结果比较

    • 相较于当前方法,基于物理的方法产生了更准确和可解释的结果,展示了在发现新的神经生物学机制方面具有巨大潜力。

方法

在这里插入图片描述
图1(a):Tau在大脑网络中的传播促进了疾病进展中Tau聚集物的积累。
图1(b):展示了基于焦点模式变化估计Tau聚集物传播流的计算挑战的示意图。
标准摄取值比率(Standard Uptake Value Ratio,SUVR)

问题阐述

神经科学假设:我们的大脑通过高效的信息交换促进了有毒的tau蛋白快速在整个大脑中传播。要理解这种传播,必须测量tau蛋白聚集物在复杂的大脑网络中的内在信息流量(如通量和带宽)。

从机器学习的角度提出问题:
总体目标是估算时间相关的流场f(t),表示tau传播的流动,使得xi(t + 1) = xi(t) + ΣN_j=1fij(t),其中fij(t)代表从区域vi到vj的有向流动。如图1(b)中的示例所示,给定纵向变化x,F有许多可能的解。为了将这个问题转化为一个明确定义的问题,我们构想大脑中的每一处tau传播形成了一个独特的动态传输系统,传播流是由tau特定的势能场驱动的,其中ui(t)是对底层区域vi处tau积累xi的非线性过程φ的输出,即ui = φ(xi)。势能场驱动大脑中tau聚集物的流动,类似于重力场驱动水流。因此,tau的传播被定义为相连区域之间势能梯度。
在这里插入图片描述
因此,我们模型的基本见解是,传播流fij(t)被构建为tau势能场的“能量传输”过程。综合而言,我们模型的输出是动态系统的机械方程M(·),它可以基于历史流动序列预测未来的流动。

tau在大脑中传播的运输方程:
在这里插入图片描述
其中q是势能u的通量(守恒量)。方程2的直觉是能量密度的变化(由区域tau SUVR x测量)导致了整个大脑的能量传输(由PEF的通量测量)。由于通量通常被定义为流动的速率,我们进一步定义能量流为qij = α · fij,其中α是一个可学习的参数,用于表征tau流fij对势能通量qij的贡献。将ut = φ(xt)和qij = α · fij代入方程2,tau传播流f的能量传输过程可以描述为:
在这里插入图片描述

TauFlowNet: An Explainable Deep Model Principled with TV-Based Lagrangian Mechanics

在这里插入图片描述

实验结果

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值