Boundary-Weighted Logit Consistency Improves Calibration of Segmentation Networks

Boundary-Weighted Logit Consistency Improves Calibration of Segmentation Networks

摘要

提出了一种新的正则化方法,利用随机变换中的logit一致性来防止在具有模糊标签的像素处产生过度自信的预测。该方法的边界加权扩展进一步提高了分割的准确性。实验结果表明,该方法在前列腺和心脏 MRI 分割中取得了最先进的校准效果,显著改善了预测的准确性和稳定性。研究结果表明,利用随机变换中的logit一致性作为正则化器,结合边界加权扩展,可以有效提高神经网络在图像分割任务中的校准效果,特别适用于医学图像分割领域。
代码地址

方法

Consistency Regularization at Pixel-Level

CR 中使用的监督损失和无监督损失的相对行为如何有助于提高校准性能。CR 中常见的选择是像素级的交叉熵损失 L s L_s Ls 和像素级的平方和损失 L c L_c Lc。对于这些选择,像素 j j j 的总损失可以写成如下形式:
在这里插入图片描述
其中, z j z_j zj z j ′ z_j^{\prime}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值