文章目录
Boundary-Weighted Logit Consistency Improves Calibration of Segmentation Networks
摘要
提出了一种新的正则化方法,利用随机变换中的logit一致性来防止在具有模糊标签的像素处产生过度自信的预测。该方法的边界加权扩展进一步提高了分割的准确性。实验结果表明,该方法在前列腺和心脏 MRI 分割中取得了最先进的校准效果,显著改善了预测的准确性和稳定性。研究结果表明,利用随机变换中的logit一致性作为正则化器,结合边界加权扩展,可以有效提高神经网络在图像分割任务中的校准效果,特别适用于医学图像分割领域。
代码地址
方法
Consistency Regularization at Pixel-Level
CR 中使用的监督损失和无监督损失的相对行为如何有助于提高校准性能。CR 中常见的选择是像素级的交叉熵损失 L s L_s Ls 和像素级的平方和损失 L c L_c Lc。对于这些选择,像素 j j j 的总损失可以写成如下形式:
其中, z j z_j zj 和 z j ′ z_j^{\prime}