从像素到癌症:计算机断层扫描中的细胞自动机

From Pixel to Cancer: Cellular Automata in Computed Tomography

摘要

背景: 用于癌症检测的 AI 遇到了数据稀缺、注释困难和早期肿瘤患病率低的瓶颈。肿瘤合成寻求在医学图像中创建人工肿瘤,这可以极大地多样化 AI 训练的数据和注释。然而,由于需要特定的专业知识和设计,目前的肿瘤合成方法不适用于不同的器官。
目的: 本文建立了一套模拟肿瘤发展的通用规则。
方法: 每个细胞(像素)最初被分配一个介于 0 和 10 之间的状态来代表肿瘤群,并且可以根据三个规则来开发肿瘤来描述生长、侵袭和死亡的过程。我们应用这三个通用规则来模拟肿瘤的发展——从像素到癌症——使用细胞自动机。然后,我们将肿瘤状态整合到原始计算机断层扫描 (CT) 图像中,以生成跨不同器官的合成肿瘤。这种肿瘤合成方法允许在多个阶段对肿瘤进行采样并分析肿瘤-器官相互作用。
结果: 使用来自全球 68 家医院的 9,262 张原始、未标记的 CT 图像分析和模拟不同阶段的肿瘤发展。在肝脏、胰腺和肾脏中分割肿瘤的性能超过了主流文献基准,强调了肿瘤合成的巨大潜力,尤其是在早期癌症检测方面。
代码地址

方法

在这里插入图片描述
首先根据 CT 值量化器官(例如肝脏),将每个像素分为四个级别:1 级(最软)到 4 级(最硬),血管/边界为 0 级。接下来,从器官组织的任意像素(水平 > 0)产生肿瘤。受元胞自动机的启发,设计了三个通用规则:(1) 生长,(2) 入侵,和 (3) 死亡。这些规则监督肿瘤的发展和与量化器官的相互作用,维护动态更新的肿瘤群体图谱。最后,我们将此映射转换回原始 CT 图像,根据原始值和肿瘤群修改 CT 值——肿瘤群越多,CT 值越小(视觉上更暗)。
在这里插入图片描述

实验结果

表 1.视觉图灵测试涉及三名专家,每位专家评估 150 张 CT 图像,每个器官 50 张。他们的任务是将每张 CT 图像分类为真实图像或合成图像。较低的特异性评分表示被鉴定为真实存在的合成肿瘤数量较高。我们还提供了正确和错误识别合成肿瘤的典型示例。红点表示人类专家认为这是一个合成肿瘤,而绿点表示他们认为这是一个真正的肿瘤
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值