D-CoRP: Differentiable Connectivity Refinement for Functional Brain Networks
摘要
背景: 脑网络是理解大脑的重要工具,为科学研究和临床诊断提供了关键见解。然而,现有的脑网络模型通常侧重于脑区本身,或忽略了脑连接的复杂性。此外,由MRI衍生的脑网络数据容易受到连接噪声的影响,这凸显了在脑网络建模中纳入连接信息的必要性。
目的: 针对这一问题,提出了一种可微分模块用于优化脑连接结构。
方法: 采用基于信息瓶颈理论的多变量优化方法,以应对脑网络的复杂性,并过滤噪声或冗余连接。此外,该方法可作为灵活的插件,适用于大多数图神经网络(GNN)。
结果: 大量实验结果表明,该方法能够显著提升多种基线模型的性能,并优于其他最新方法,验证了其在优化脑网络连接方面的有效性和泛化能力。代码已公开,链接为 https://github.com/Fighting-HHY/D-CoRP。
方法
图 1. 模型架构。D-CoRP 通过两个步骤细化图连接:
- 掩码矩阵的可微分采样(即,Distribution Estimator 提取网络连接的必要性概率,而 Differentiable Sampling 使用可微采样方法过滤必要的连接)
- 针对精炼结果的信息瓶颈优化,如 IB Optimizer 部分所示
实验结果