很多通信原理中挂在嘴边的词,有时候还真弄得不是非常清楚。本文旨在通过对 奈奎斯特第一准则 定义的刨根问底,深入地了解定理以及一些耳熟能详的名词和概念。
文章目录
刨根对象:奈奎斯特第一准则
表述:在带宽为 B B B 的信道 [ 1 ] [1] [1] 上进行传输,要想无码间串扰 [ 2 ] [2] [2] ,那么应有码元速率 R s ≤ 2 B R_s ≤ 2B Rs≤2B [ 3 ] [3] [3] 。而要实现这样的传输速率,必须得使用带宽为 B B B 的理想低通滤波器 [ 4 ] [4] [4] 对信号进行过滤。
疑问 [1]:带宽
信号的带宽
首先是信号的带宽:信号的带宽,就是信号所包含的频率范围,单位是 H z Hz Hz。
通俗地举一个例子:比如一个信号
f
(
t
)
f(t)
f(t) 可以分解为:
f
(
t
)
=
s
i
n
(
2
Π
t
)
+
2
s
i
n
c
(
4
Π
t
)
+
5
s
i
n
(
8
Π
t
)
f(t) = sin(2Πt)+2sinc(4Πt)+5sin(8Πt)
f(t)=sin(2Πt)+2sinc(4Πt)+5sin(8Πt)
我们可以看到这个信号由频率分别为:
1
H
z
,
2
H
z
,
4
H
z
1Hz, 2Hz, 4Hz
1Hz,2Hz,4Hz的三种频率的正弦波叠加而成。那么
f
(
t
)
f(t)
f(t) 最低频率的成分就是
1
H
z
1Hz
1Hz,最高的频率成分就是
4
H
z
4Hz
4Hz,那么这个
f
(
t
)
f(t)
f(t) 信号的带宽
B
B
B 就是:
4
H
z
−
1
H
z
=
3
H
z
4Hz - 1Hz = 3Hz
4Hz−1Hz=3Hz
信道的带宽
信道的带宽,可以理解为信道允许信号通过的频率范围。如果把信道比作一条大马路,那么信道的带宽 B B B 就是这条马路的车道(车道有慢车道,中间车道和快车道)也就对应着信号不同频率分量。

如果信号的频率范围比信道的带宽还要大,就必然会造成严重的失真。
疑问 [2]:码间串扰
什么是码间串扰
我们在抽样判决时刻 k T s kT_s kTs 时,抽样得到的信号的幅值,不仅仅包括在该 k T s kT_s kTs 时刻的码元幅值,还夹杂了其他时刻码元的幅值,这种现象就叫做码间串扰。
比如说,我们非常希望在 k T s kT_s kTs 的抽样时刻采样的波形幅度是下图这样的:

每一个 k T s kT_s kTs 的信号幅度仅仅取决于该时刻的码元幅度。但是,实际上由于信道啊,滤波器的不理想因素,会导致这个模拟信号的形变(比如说拖尾),那么实际上我们在 k T s kT_s kTs 时刻的采样值就会是这样的:

我们看到在 2 T s 2T_s 2Ts 抽样时刻,信号的幅值包括 2 T s 2T_s 2Ts, T s T_s Ts 两个时刻码元幅值的叠加,这就是码间串扰
码间串扰的消除
既然实际的情况下,信号都会有退拖尾的现象,那么我们能不能构造一个特殊的 “拖尾”,让拖尾在之后的 k T s kT_s kTs 处刚好为0:

这就是我们在之前的 B l o g Blog Blog 中讨论到的 s i n c sinc sinc 函数了,以脉冲响应 h ( t ) = s i n c ( t ) h(t) = sinc(t) h(t)=sinc(t) 的滤波器过滤数据能保证在每一个抽样时刻 k T s kT_s kTs 信号的幅值都仅取决于这个时刻的值。这就是消除码间串扰的思路。
疑问 [3]:码元
什么是码元
码元我们这样理解:现在我们有一串二进制消息序列 01011010010111 ⋯ 01011010010111\cdots 01011010010111⋯,我们在数字通信系统中需要进行信源编码,我们来看看:
- 如果采取 2 个比特 为一组的划分,上面的序列就变为了:
01
01
10
10
01
01
11
⋯
01\space 01 \space10 \space10 \space01 \space01 \space11 \cdots
01 01 10 10 01 01 11⋯
这两个一组的比特序列就是一个码元,比如这里 01 01 01是一个码元, 10 10 10也是一个码元 - 如果采取 4 个比特为一组的划分,上面的序列就变成了:
0101
1010
0101
⋯
0101\space1010\space0101\cdots
0101 1010 0101⋯
这四个一组的比特序列就是一个码元,比如 0101 0101 0101是一个码元, 1010 1010 1010也是一个码元
以 k k k 个比特划分可以组成 M M M 进制的码元,有: k = l o g 2 M k = log_2M k=log2M
什么是码元速率、比特速率
码元速率,就是在单位时间内能够传输的码元的个数,用 R s R_s Rs 表示。
而比特速率,就是在单位时间内能够传输的比特的数目,用 R b R_b Rb 表示。
比如一个 4 进制码元(M = 4),假设一秒钟可以传输 6 个码元。那么
R
s
=
6
b
i
t
/
s
R_s = 6 bit/s
Rs=6bit/s
但是,由于一个码元有
k
=
2
k = 2
k=2 个比特组成,因此一秒内相当于传输了
12
12
12 个比特,那么比特速率就是:
R
b
=
12
b
i
t
/
s
R_b = 12bit/s
Rb=12bit/s
疑问 [4]:什么是理想低通滤波器
理想低通滤波器的脉冲函数 h ( t ) h(t) h(t),就是我们刚刚讨论到的 s i n c ( t ) sinc(t) sinc(t) 函数,它的频率响应如下:

负频率那一半其实只是旋转向量的转向不一样罢了,但是频率绝对值大小是一样的。因此,理想低通滤波器的带宽就是图示的 B B B.
信号通过理想低通滤波器之后,带宽就会被限制在了 B B B 内,这样才可以通过带宽为 B B B 的信道而不至于发生严重失真。
实际的低通滤波器
实际的低通滤波器,就是滚降系数不同的升余弦滚降滤波器。因为理想的 s i n c sinc sinc 函数尾巴还是挺长的,而实际抽样不可能那么精确第定时到 k T s kT_s kTs,因此我们需要使用尾巴更小的 h ( t ) h(t) h(t) ,作为实际滤波器的脉冲响应。