TimeSeries时间序列函数-移动平均法

文章介绍了三种移动平均方法在时间序列数据分析中的应用:简单移动平均法用于数据平滑,趋势移动平均法通过两次平均揭示趋势,加权移动平均法考虑了不同数据点的重要性。每种方法都涉及预测值的计算和误差评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单移动平均法

clc, clear

y = [533.8 574.6 606.9 649.8 705.1 772.0 816.4 892.7 963.9 1015.1 1102.7];

m = length(y);

n = [4,5]; % n位移动平均的项数,选取4和5分别做一次运算

for i = 1:length(n)

for j = 1:m-n(i)+1

yhat{i}(j) = sum(y(j:j+n(i)-1))/n(i);

end

y_predict(i) = yhat{i}(end); % 预测值

s(i) = sqrt(mean( (y(n(i)+1:m) - yhat{i}(1:end-1)).^2 )); % 预测的标准误差

end

趋势移动平均法

% 在一次移动平均的基础上再做一次移动平均

clc, clear

y = [676 825 774 716 940 1159 1384 1524 1668 1688 1958 2031 2234 2566 2820 3006 3093 3277 3514 3770 4107];

% 第一次移动平均

m1 = length(y);

n = 6; % 移动平均的项数

for i = 1:m1-n+1

yhat1(i) = sum(y(i:i+n-1))/n;

end

% 第二次移动平均

m2 = length(yhat1);

for i = 1:m2-n+1

yhat2(i) = sum(yhat1(i:i+n-1))/n;

end

plot(1:m1, y, '*');

% 计算平滑系数

at = 2*yhat1(end) - yhat2(end);

bt = 2*(yhat1(end)-yhat2(end)) / (n-1);

% 预测后两个数值

y_predict1 = at + bt;

y_predict2 = at + 2*bt;

加权移动平均法

clc ,clear

y = [6.35 6.20 6.22 6.66 7.15 7.89 8.72 8.94 9.28 9.80];

w = [1/6; 2/6; 3/6]; % 各加权项的权重

m = length(y);

n = 3; % 移动平均的项数

for i = 1:m-n+1

yhat(i) = y(i:i+n-1)*w;

end

err = abs(y(n+1:m)-yhat(1:end-1))./y(n+1:m); % 计算相对误差(最开始的三项数据是没有相对误差的)

T_err = 1 - sum(yhat(1:end-1))/sum(y(n+1:m)); % 计算总的相对误差

y_predict = yhat(end) / (1-T_err); % 用总的相对误差修正预测值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习不好的电气仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值