简单移动平均法
clc, clear
y = [533.8 574.6 606.9 649.8 705.1 772.0 816.4 892.7 963.9 1015.1 1102.7];
m = length(y);
n = [4,5]; % n位移动平均的项数,选取4和5分别做一次运算
for i = 1:length(n)
for j = 1:m-n(i)+1
yhat{i}(j) = sum(y(j:j+n(i)-1))/n(i);
end
y_predict(i) = yhat{i}(end); % 预测值
s(i) = sqrt(mean( (y(n(i)+1:m) - yhat{i}(1:end-1)).^2 )); % 预测的标准误差
end
趋势移动平均法
% 在一次移动平均的基础上再做一次移动平均
clc, clear
y = [676 825 774 716 940 1159 1384 1524 1668 1688 1958 2031 2234 2566 2820 3006 3093 3277 3514 3770 4107];
% 第一次移动平均
m1 = length(y);
n = 6; % 移动平均的项数
for i = 1:m1-n+1
yhat1(i) = sum(y(i:i+n-1))/n;
end
% 第二次移动平均
m2 = length(yhat1);
for i = 1:m2-n+1
yhat2(i) = sum(yhat1(i:i+n-1))/n;
end
plot(1:m1, y, '*');
% 计算平滑系数
at = 2*yhat1(end) - yhat2(end);
bt = 2*(yhat1(end)-yhat2(end)) / (n-1);
% 预测后两个数值
y_predict1 = at + bt;
y_predict2 = at + 2*bt;
加权移动平均法
clc ,clear
y = [6.35 6.20 6.22 6.66 7.15 7.89 8.72 8.94 9.28 9.80];
w = [1/6; 2/6; 3/6]; % 各加权项的权重
m = length(y);
n = 3; % 移动平均的项数
for i = 1:m-n+1
yhat(i) = y(i:i+n-1)*w;
end
err = abs(y(n+1:m)-yhat(1:end-1))./y(n+1:m); % 计算相对误差(最开始的三项数据是没有相对误差的)
T_err = 1 - sum(yhat(1:end-1))/sum(y(n+1:m)); % 计算总的相对误差
y_predict = yhat(end) / (1-T_err); % 用总的相对误差修正预测值