ReFT: reasoning with reinforced Fine-Tuning

在这里插入图片描述
在这里插入图片描述
从一个question中看到多种多样的cot,都可以从中学习。
offline self-training

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
数据的质量是模型自己来定义的。
在这里插入图片描述
在这里插入图片描述
思考增加或者减少一条数据,对于模型训练的影响。
用influence function来衡量新增一条数据对于模型训练的整体的影响。
在这里插入图片描述
在这里插入图片描述
高质量的数据能够对模型产生正向的影响。
高质量的数据能够对主题产生正向的支持/反对。
使用最后一层MLP的梯度,聚类找出

在这里插入图片描述
对比随即筛选和reward model筛选(开源的,用于对齐人类便好)。
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五阿哥爱跳舞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值