Ollama vs VLLM - A Performance Comparison
在人工智能和机器学习领域,选择合适的工具对于项目的成功至关重要。最近,我们对两个流行的工具——Ollama和VLLM——进行了性能测试,使用了相同的AI模型(Llama2 8B)。以下是我们的发现和比较结果。
1. 处理多请求(并发性)
Ollama: 能够处理多个请求,但随着请求数量的增加,其速度会显著减慢。
VLLM: 在处理多个请求时表现出色,即使请求量很大,也能保持较快的响应速度。
2. 速度
Ollama: 在同时处理16个请求时,每个请求大约需要17秒。
VLLM: 在同样的情况下,每个请求仅需约9秒。
3. 输出(生成的令牌)
在16个并发请求的情况下,VLLM每秒生成的令牌(即单词)数量是Ollama的两倍。
4. 极限测试
Ollama: 在同时处理32个请求时表现挣扎,显示出其处理能力的上限。
VLLM: 即使在32个请求的高负载下,也能平稳运行,每秒生成1000个令牌。
结论
从我们的测试结果来看,VLLM在并发处理能力、速度和输出效率方面均优于Ollama。对于需要处理大量请求和高效率输出的应用场景,VLLM无疑是更合适的选择。然而,对于请求量较小或对成本更为敏感的项目,Ollama可能仍然是一个可行的选项。
在选择工具时,建议根据项目的具体需求和预期负载来做出决策。希望这篇比较能帮助你在Ollama和VLLM之间做出更明智的选择。
注意: 本文基于特定的测试环境和条件,实际使用中可能会有所不同。建议在实际部署前进行充分的测试和评估。