文章目录
一、向量检索基础概念与技术原理
1.1 向量检索的核心概念
向量检索(Vector Search)是一种基于向量相似度的信息检索技术,它通过将数据对象表示为高维空间中的向量,然后计算这些向量之间的距离或相似度来找到最相关的项目。
在OceanBase数据库中,向量检索的实现主要基于以下几个核心概念:
-
向量嵌入(Vector Embedding):
- 将非结构化数据(如文本、图像、音频)通过深度学习模型转换为固定长度的数值向量
- 典型维度:128维、256维、512维、768维或更高
- 示例:BERT模型生成的文本嵌入向量通常为768维
-
相似度度量(Similarity Metrics):
- 常用的向量相似度计算方法包括:
度量方法 公式 特点 适用场景 欧氏距离(L2) √(Σ(x_i - y_i)²) 几何空间中的直线距离
- 常用的向量相似度计算方法包括: