OceanBase向量检索实战(推荐系统、语义搜索、图像检索)详解

一、向量检索基础概念与技术原理

1.1 向量检索的核心概念

向量检索(Vector Search)是一种基于向量相似度的信息检索技术,它通过将数据对象表示为高维空间中的向量,然后计算这些向量之间的距离或相似度来找到最相关的项目。

在OceanBase数据库中,向量检索的实现主要基于以下几个核心概念:

  1. 向量嵌入(Vector Embedding)

    • 将非结构化数据(如文本、图像、音频)通过深度学习模型转换为固定长度的数值向量
    • 典型维度:128维、256维、512维、768维或更高
    • 示例:BERT模型生成的文本嵌入向量通常为768维
  2. 相似度度量(Similarity Metrics)

    • 常用的向量相似度计算方法包括:
      度量方法 公式 特点 适用场景
      欧氏距离(L2) √(Σ(x_i - y_i)²) 几何空间中的直线距离
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clf丶忆笙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值