第1节:感知机perceptron原理与numpy复现

本文介绍了感知机模型,作为最古老的分类方法之一,它虽然是线性模型,但作为神经网络的雏形,仍具有研究价值。感知机通过寻找超平面进行线性划分,并使用随机梯度下降法优化损失函数。文章还详细阐述了感知机的原理、学习策略,并提供了numpy实现的概述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感知机perception

  • 感知机是最古老的分类方法之一.在1957年就已经提出了.虽然今天看他的分类模型泛化能力不强,但是还是值得去深入研究,因为感知机是神经网络的雏形.
  • 感知机perception是二分类的线性分类模型,输入是实例的特征向量,输出是+1和-1二值.感知机对于输入空间中将实例划分为正负两个类的超平面,属于判别模型.感知机学习过程就是将数据集进行线性瓜分,导入损失函数,并以梯度下降来对损失函数进行极小化,求得感知机模型.
  • 感知机预测就是对训练好的模型进行预测.

感知机原理

  • 假设输入空间是x,x是实例的特征向量,输出空间是y,y的取值范围为{-1,+1}

f ( x ) = s i g n ( w ⋅ x + b ) f(x)=sign(w \cdot x+b)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI拉呱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值