文章目录
感知机perception
- 感知机是最古老的分类方法之一.在1957年就已经提出了.虽然今天看他的分类模型泛化能力不强,但是还是值得去深入研究,因为感知机是神经网络的雏形.
- 感知机perception是二分类的线性分类模型,输入是实例的特征向量,输出是+1和-1二值.感知机对于输入空间中将实例划分为正负两个类的超平面,属于判别模型.感知机学习过程就是将数据集进行线性瓜分,导入损失函数,并以梯度下降来对损失函数进行极小化,求得感知机模型.
- 感知机预测就是对训练好的模型进行预测.
感知机原理
- 假设输入空间是x,x是实例的特征向量,输出空间是y,y的取值范围为{-1,+1}
f ( x ) = s i g n ( w ⋅ x + b ) f(x)=sign(w \cdot x+b)