Elasticsearch 可搜索快照

可搜索快照是一种经济高效的解决方案,用于存储和检索不常访问的历史数据。这种技术减少了对本地存储的需求,降低了运营成本。通过挂载快照,Elasticsearch可以在不需要副本的情况下管理索引,当节点故障时,可以从存储库恢复数据。适用于AWSS3、谷歌云存储等不同存储库。可搜索快照依赖于可靠的存储库,以防止数据丢失,确保数据可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可搜索快照可以让快照以非常经济高效的方式搜索不常访问的只读数据。Cold tier 和 frozen tier 使用可搜索的 快照来降低存储和运营成本。

可搜索的快照不需要分片副本,理想情况下,可为数据存储节省一半所需的本地存储空间。可搜索快照依赖于已用于备份的相同快照机制,并且对快照存储库存储成本的影响最小。

可搜索快照非常适合管理大量历史数据存档。历史信息的搜索频率通常低于最近的数据,因此可能不需要副本来获得性能优势。对于更复杂或更耗时的搜索,可以结合异步搜索一起使用。

1 支持的存储库

2 挂载快照

POST /_snapshot/my_backup/snapshot_1/_mount?wait_for_completion=true 
{
  "index": "product",
  "renamed_index": "product_bak",
  "index_settings": {
    "index.number_of_replicas": 0
  }
}

3 工作原理

如果持有其中一个分片的节点出现故障,Elasticsearch 会自动将受影响的分片分配到另一个节点上,该节点会从存储库中恢复相关的分片数据。不需要副本,也不需要复杂的监控或编排来恢复丢失的分片。虽然可搜索快照索引默认没有副本,但可以通过调整 index.number_of_replicas. 可搜索快照分片的副本通过从快照存储库复制数据来恢复,就像可搜索快照分片的主分片一样。相反,常规索引的副本是通过从主索引复制数据来恢复的。

当从快照挂载索引时,Elasticsearch 会将其分片分配给集群内的数据节点。然后,数据节点会根据指定的挂载选项,自动将存储库中的相关分片数据检索到本地存储 中。如果可能,搜索使用本地存储中的数据。如果数据在本地不可用,Elasticsearch 会从快照存储库下载它需要的数据。

4 可靠性

image.png

可搜索快照索引中数据依赖于存储在存储库中的底层快照拷贝。如果存储库故障或快照内容损坏,那么数据就会丢失。尽管 Elasticsearch 可能已将数据副本复制到本地存储中,但这些副本可能不完整,并且无法在存储库故障后用于恢复任何数据。您必须确保您的存储库是可靠的,并且可以防止数据在存储库中静止时损坏。

<think>好的,我现在需要处理用户的问题:“请使用中文回答我或者给我介绍一下: es 可搜索快照 管理”。首先,我要理解用户的需求。用户之前已经询问过关于Elasticsearch堆栈故障自动告警的问题,现在转向了“可搜索快照”的管理。这可能意味着用户正在使用或计划使用Elasticsearch可搜索快照功能,现在需要了解如何有效管理这一功能。 首先,我应该回顾Elasticsearch可搜索快照(Searchable Snapshots)是什么。根据官方文档,可搜索快照允许用户将快照挂载为可搜索的索引,从而节省存储成本,尤其是在冷数据层。这个功能在7.10版本之后引入,作为冷层(Cold Tier)的一部分,用于长期存储不经常访问的数据。 接下来,我需要确定用户可能的背景。用户可能已经使用了Elasticsearch的基础功能,现在希望优化存储成本,或者他们可能在处理大量历史数据,需要更经济高效的存储方案。此外,用户可能对如何配置、监控和维护可搜索快照存在疑问,特别是在生产环境中如何确保数据的可用性和性能。 然后,我需要分析用户的问题中的“管理”具体指哪些方面。通常,管理可能包括创建、配置、监控、优化以及故障处理等方面。因此,我需要涵盖这些方面,给出详细的步骤、最佳实践以及注意事项。 此外,用户可能没有明确提到他们的具体使用场景,比如数据量、访问频率、集群规模等,所以在回答时需要保持一定的通用性,同时也要提醒用户根据实际情况调整配置。 在组织回答时,应该先介绍可搜索快照的基本概念和工作原理,然后分步骤讲解如何配置和管理,包括快照仓库的创建、生命周期管理策略(ILM)、存储层配置、监控和维护等。同时,需要提到性能优化技巧和常见问题的解决方法,比如如何处理快照挂载失败或性能下降的情况。 还需要注意用户可能遇到的权限问题,比如快照仓库的访问权限,以及安全设置。此外,版本兼容性也是一个关键点,因为可搜索快照功能在不同版本间可能有差异,用户需要确保他们的Elasticsearch版本支持相关功能。 最后,应该总结一些最佳实践,帮助用户高效地管理可搜索快照,比如合理规划数据分层、定期验证快照完整性、监控存储成本等。可能还需要提到与其他Elasticsearch功能(如索引生命周期管理、跨集群复制)的结合使用,以提供更全面的解决方案。 在撰写过程中,需要确保使用清晰的结构,分点说明,便于用户理解。同时,使用示例代码或配置片段能帮助用户更好地操作,比如创建快照仓库的API请求示例,或者ILM策略的JSON配置。还要注意使用中文,避免专业术语的直译,保持语言通俗易懂。 需要检查是否有遗漏的关键点,比如安全性、成本控制、监控指标等。同时,考虑用户可能遇到的问题,如快照恢复速度慢,或者挂载后的索引性能问题,应该在注意事项或最佳实践中给出建议。 总结来说,回答需要覆盖可搜索快照的基础知识、配置步骤、管理策略、优化技巧、常见问题处理以及最佳实践,确保用户能够全面了解并有效管理他们的可搜索快照。</think>以下是关于 **Elasticsearch(ES)可搜索快照(Searchable Snapshots)管理** 的详细介绍,涵盖核心概念、配置方法、管理策略及最佳实践: --- ### 1. **可搜索快照的核心概念** - **定义**: 可搜索快照(Searchable Snapshots)允许将存储在快照仓库(如 S3、Azure Blob、HDFS 等)中的索引直接挂载为**可读索引**,无需完整恢复数据。 适用于冷数据(Cold Tier)场景,降低存储成本。 - **两种模式**: - **Fully Mounted Index**:完整挂载快照,支持读写(需复制数据到集群)。 - **Partially Mounted Index**:部分挂载(仅缓存热数据),仅支持搜索,数据按需从快照仓库加载。 - **适用场景**: - 归档历史数据(如日志、审计记录)。 - 减少本地存储成本,利用对象存储的廉价资源。 --- ### 2. **可搜索快照的配置步骤** #### **步骤 1:创建快照仓库** 注册一个支持快照存储的仓库(以 S3 为例): ```bash PUT /_snapshot/my_s3_repo { "type": "s3", "settings": { "bucket": "my-es-snapshots", "region": "us-west-2", "client": "default" } } ``` #### **步骤 2:创建基础快照** 为需要归档的索引创建初始快照: ```bash PUT /_snapshot/my_s3_repo/snapshot_2023 { "indices": "logs-2023-*", "ignore_unavailable": true } ``` #### **步骤 3:挂载快照可搜索索引** 将快照挂载到集群中(以部分挂载模式为例): ```bash POST /_snapshot/my_s3_repo/snapshot_2023/_mount?storage=shared_cache { "index": "logs-2023-01", "renamed_index": "restored-logs-2023-01", "index_settings": { "index.number_of_replicas": 0 } } ``` - `storage=shared_cache`:启用部分挂载(缓存层)。 - 挂载后索引会自动进入 `read-only` 状态。 --- ### 3. **可搜索快照的管理策略** #### **生命周期管理(ILM)集成** 通过 ILM 自动管理可搜索快照的生命周期: 1. **定义 ILM 策略**: ```json PUT /_ilm/policy/cold_data_policy { "policy": { "phases": { "cold": { "actions": { "searchable_snapshot" : { "snapshot_repository" : "my_s3_repo", "force_merge_index": true } } }, "delete": { "min_age": "365d", "actions": { "delete": {} } } } } } ``` 2. **关联索引**: ```bash PUT /logs-2023-*/_settings { "index.lifecycle.name": "cold_data_policy" } ``` #### **存储层配置** 在 `elasticsearch.yml` 中配置冷层节点,确保部分挂载索引分配到冷节点: ```yaml node.roles: [data_cold, remote_cluster_client] ``` #### **缓存管理** - **缓存路径配置**: ```yaml path.shared_file_cache: /path/to/cache ``` - **缓存清理**: 通过 API 清理无效缓存: ```bash POST /_searchable_snapshots/cache/clear ``` --- ### 4. **监控与维护** #### **关键监控指标** - **缓存命中率**:`indices.searchable_snapshots.shared_cache.num_hits` - **存储层延迟**:`indices.searchable_snapshots.download_stats.latency` - **仓库健康状态**:`GET /_snapshot/my_s3_repo/_status` #### **常见维护操作** - **强制卸载索引**: ```bash DELETE /restored-logs-2023-01 ``` - **修复损坏快照**: ```bash POST /_snapshot/my_s3_repo/snapshot_2023/_restore?verify=true ``` --- ### 5. **最佳实践与注意事项** #### **最佳实践** - **数据分层策略**: - 热数据(Hot Tier):本地 SSD,读写频繁。 - 温数据(Warm Tier):本地 HDD,只读。 - 冷数据(Cold Tier):可搜索快照 + 对象存储。 - **性能优化**: - 为部分挂载索引分配足够缓存空间(建议 ≥ 20% 数据量)。 - 避免频繁更新已挂载索引(仅限冷数据场景)。 - **版本兼容性**: - 确保快照仓库与 ES 版本兼容(跨版本恢复需谨慎)。 #### **注意事项** - **权限控制**:快照仓库需配置 IAM 角色或访问密钥。 - **网络带宽**:跨区域挂载可能引入延迟(建议仓库与集群同区域)。 - **索引一致性**:快照生成期间避免写入操作。 --- ### 6. **故障处理** - **快照挂载失败**: - 检查仓库权限和网络连通性。 - 验证快照元数据完整性: ```bash GET /_snapshot/my_s3_repo/_all?verbose=false ``` - **搜索性能下降**: - 增加缓存空间或调整 `indices.recovery.max_bytes_per_sec`。 - 检查对象存储服务的吞吐量限制。 --- 通过合理管理可搜索快照,可将冷数据存储成本降低 50% 以上,建议结合 ILM 和分层存储设计长期数据管理方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Elastic开源社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值