Tipos de Transformaciones
   Transformaciones intrínsecas:
    – Operan individualmente en cada objeto (coordenadas
      locales).
   Transformaciones de modelaje:
    – Emplazan un objeto (coordenadas locales) en una escena
      (coordenadas globales).
   Transformaciones de visualización:
    – Se aplica a escenas (coordenadas globales), para definir
     condiciones de visualización (coordenadas de
     visualización).

                                                             1
Transformaciones Afines
 Las transformaciones pueden ser
  representadas por una matriz.
 Técnicamente, están compuestas por
  cualquier combinación de transformaciones
  lineales: traslación, escalamiento, rotación,
  deformación.
 Las transformaciones afines usan un sistema
  homogeneo de coordenadas.

                                                  2
Traslación
V   D.V
x     1 0 0 dx         x
y     0 1 0 dy         y
                   .
z     0 0 1 dz         z
1     0 0 0 1          1
                           3
Traslación en el Plano XY

    x   x   x
    y   y   y
    z   z




                            4
Escalamiento
V   E.V
x     ex   0    0    0       x
y     0    ey   0    0       y
                         .
z     0    0    ez   0 z
1     0    0    0    1 1
                                 5
Escalamiento a lo Largo de Eje X

            x   2. x
            y   y
            z   z




                               6
Escalamiento y Traslación

   x    ex ( x )   x
   y    ey ( y)     y
   z    ez ( z )   z

                            7
Reflexión Alrededor del Eje X
(Caso Especial de Escalamiento)
           x   x
           y       y
           z   z




                                  8
Rotación Antihoraria Alrededor de
        los Ejes X, Y y Z
      x         x            1     0          0         0
      y         y            0 cos           sen        0
           R.           Rx
      z         z            0 sen           cos        0
      1         1            0   0            0         1
     cos   0 sen    0        cos       sen         0 0
      0    1  0     0        sen       cos         0 0
Ry                      Rz
     sen   0 cos    0          0        0          1 0
      0    0  0     1          0        0          0 1
                                                    9
Rotación Antihoraria
Alrededor del Eje Z
           x   x. cos   y.sen
           y   x.sen    y. cos
           z   z




                                 10
Rotación General
    (Alrededor de Eje en Objeto)
                  Traslación



x   (x   x) cos   (y     y ) sen   x
y   (x   x) sen   (y     y ) cos   y   Rotación
z   z


                   Traslación




                                                  11
Deformación: Estrechamiento
   Escalamiento gradual:

              e 0 0 0          x
              0 e 0 0 y
       V             .
              0 0 1 0 z
              0 0 0 1 1
       e    f ( z ) (lineal o no lineal)   12
Estrechamiento




                 13
Deformación: Torsión
   Rotación diferenciada:

           cos       sen     0 0       x
           sen      cos      0 0       y
     V                             .
              0       0      1 0       z
              0       0      0 1 1
          f ( z)
     (ángulo de giro / unidad de longitud)
                                             14
Torsión




          15
Doblez




         16
Vectores
       Segmentos de línea que tienen magnitud y dirección.
P       ( x1 , y1 , z1 )
                                                                           z
Q       ( x2 , y 2 , z 2 )
PQ         a      ( x2       x1 , y2   y1 , z 2   z1 )                a3
a       a1 , a2 , a3
                                                                           a
                                                                  P            Q
a       a1 i a2 j a3 k
                                                             a1                    a2
a           a12      2
                    a2        2
                             a3
          a                                              x                               y
na                (Vector normalizado)
          a
                                                                                    17
Funciones Vectoriales
   Funciones continuas de dominio un intervalo Real y
    codominio un subconjunto del espacio.

                                 n
    F : [ a, b] R            R
    F (t )     f1 (t ), f 2 (t ),..., f n (t )

    F (t )      f1 (t ) i    f 2 (t ) j ...      f n (t ) k

    Donde las fi son funciones reales
                                                          18
Ecuaciones de Segmentos
Forma explícita :
                                                                             y
                                                        1                                (x2,y2)
y      f ( x)   mx q           o        x   g ( y)        ( y q)
                                                        m
                y y1      y2       y1                                            (x,y)        B
m      tan
                x x1      x2       x1
Forma implícita :
f ( x, y ) 0                   ax by c          0                  (x1,y1)
( x2    x1 ) y ( y2    y1 ) x x1 y2     x2 y1       0
                                                                    A
Forma Vectorial (Segmento AB) :
F : [0,1]       R2                                                                            x
F (t ) [ x1t (1 t ) x2 , y1t (1 t ) y2 ]
                                                                                         19
Rayos
 Un rayo se define como un segmento de
  línea que posee posición, magnitud y
  dirección.
 El rayo es una entidad muy importante en
  graficación computarizada ya que permite
  simular la luz como un haz
  infinitesimalmente delgado.


                                             20
Geometría de Rayos
 Debido a que el rayo simula la trayectoria
  que sigue la luz en un entorno, la operación
  más común es la prueba de intersección.
 Estas operaciones son muy costosas por lo
  que una técnica más eficiente es encerrar los
  objetos dentro de volúmenes contenedores,
  como una esfera o una caja, antes de probar
  si hay intersecciones.

                                             21
Representación y Modelaje
         de Objetos 3D
 Creación de una representación gráfica 3D
  por computadora.
 Técnica, método o estructura de datos usada
  para representar el objeto.
 Manipulación de la representación, en
  particular, cambiar la forma de un modelo
  existente.

                                            22
Representación de Objetos
   La representación que se escoja para un
    objeto, depende de:
    – La naturaleza del objeto.
    – La técnica que se utilice para crear el objeto.
    – De la aplicación.
    Todos estos factores están
    interrelacionados.


                                                        23
Principales Modelos

 Poligonal.
 Geometría  sólida constructiva.
 Técnicas de subdivisión espacial.
 Parches bi-cúbicos paramétricos




                                      24
Representación Poligonal




                           25
Imágenes Poligonales




                       26
Creación de Objetos Poligonales

 Digitalización 3D manual.
 Explorador laser.
 Descripción matemática.
 Geometría fractal.




                              27
Geometría Sólida Constructiva
 Representación compleja de alto nivel,
  orientada al usuario.
 Requiere de técnicas especiales de
  presentación o la conversión a una malla
  poligonal previo a su presentación.
 Utiliza metáfora de bloques constructivos
  3D y operaciones de combinación.


                                              28
Imagen en Malla




                  29
Parches Bi-cúbicos Paramétricos
 Base para diseño interactivo en CAD.
 Representación alternativa a la malla de
  polígonos.
    – Representación analítica exacta.
    – Facilidad de edición de forma 3D.
    – Representación más económica.



                                             30
Elementos Bi-cúbicos
   Curvas racionales:
    – Curvas Bézier Racionales.
    – NURBS (B-Splines Racionales No-Uniformes).
   Parches:
    – Superficie Bézier.
    – Superficie B-spline.



                                               31
Curvas Bézier

                         Continuidad Posicional




Continuidad Tangencial



                                                  32
Parche Bézier




                33
Curvas B-Splines




                   34
Modelo de Parches y Presentación
          Resultante




                               35
Fotorealismo
 Conjunto de técnicas para que una imagen
  gráfica de un objeto o escena sea
  indistinguible de una imagen de televisión o
  fotografía.
 Principales campos de aplicación actual:
    – Medicina
    – Ciencia e
    – Ingeniería

                                             36
Fundamentos del Fotorealismo
   Cálculo de la interacción luz – objeto:
    – Modelos de Reflexión Directa o Local.-
      Consideran que el objeto y la fuente de luz, se
      encuentran flotando en un espacio oscuro. Sólo
      se incluye la primera reflexión de luz desde el
      objeto.
    – Modelos de Interacción Global.- Consideran
      que la luz incidente en cualquier objeto puede
      ser, a más de la luz directa, luz indirecta o
      reflejada por otros objetos en el entorno.

                                                    37
Modelo de Reflexión con
          Interacción Local
   Remoción de superficies escondidas:
    – Algoritmo Z-Buffer.- Fácil de implementar y combinar
      con algoritmos de sombreado y presentación
      (rendering)
   Sombreado de imágenes:
    – Modelo de Reflexión de Phong.- Es un modelo
      empírico, fácil de implementar, que usualmente resulta
      con un objeto reflejando más luz de la que recibe. A
      pesar de esto, es el modelo más utilizado en graficación
      computarizada.
    – Algoritmos de sombreado y texturizado.
                                                             38
Escena con Sombreado de Phong




                            39
Modelo de Interacción Global
   Trazado de Rayos
    – Técnica que trata de perfeccionar la reflexión
      especular (objetos brillantes reflejando a otros)
   Radiosidad
    – Técnica que modela la interacción difusa, esto
      es luz reflejada por superficies color mate, que
      iluminan otras superficies.



                                                         40
Escena con Trazado de Rayos y
         Radiosidad




                                41
42
Procesamiento de Imágenes

El procesamiento digital de imágenes es el
conjunto de técnicas que se aplican a las
imágenes digitales con el objetivo de mejorar
la calidad o facilitar la búsqueda de
información



                                           43
Proceso de Filtrado

Es el conjunto de técnicas englobadas dentro
del preprocesamiento de imágenes cuyo
objetivo fundamental es obtener, a partir de una
imagen origen, otra final cuyo resultado sea
más adecuado para una aplicación específica
mejorando ciertas características de la misma
que posibilite efectuar operaciones del
procesado sobre ella.
                                             44
Objetivos del Filtrado

•   Suavizar la imagen: reducir la cantidad de
    variaciones de intensidad entre píxeles vecinos.
•   Eliminar ruido: eliminar aquellos píxeles
    cuyo nivel de intensidad es muy diferente al de
    sus vecinos y cuyo origen puede estar tanto en
    el proceso de adquisición de la imagen como
    en el de transmisión.
                                                45
Objetivos del Filtrado

•   Realzar bordes: destacar los bordes que se
    localizan en una imagen.
•   Detectar bordes: detectar los píxeles donde
    se produce un cambio brusco en la función
    intensidad.

                                            46
Filtrado en el dominio de frecuencia
1.   Se aplica la Transformada de Fourier
2.   Se multiplica posteriormente por la función del filtro que ha
     sido escogido.
3.    Para concluir re-transformándola al dominio espacial
     empleando la Transformada Inversa de Fourier.

Teorema de la Convolución (frecuencia):
                    G(u,v) = F(u,v) * H(u,v)
     F(u,v): transformada de Fourier de la imagen original
             H(u,v): filtro atenuador de frecuencias
                                                              47
Filtrado en el dominio del espacio
Las operaciones de filtrado se llevan a cabo directamente
sobre los píxeles de la imagen. En este proceso se
relaciona, para todos y cada uno de los puntos de la
imagen, un conjunto de píxeles próximos al píxel
objetivo con la finalidad de obtener una información útil,
dependiente del tipo de filtro aplicado, que permita actuar
sobre el píxel concreto en que se está llevando a cabo el
proceso de filtrado para, de este modo, obtener mejoras
sobre la imagen y/o datos que podrían ser utilizados en
futuras acciones o procesos de trabajo sobre ella.
                                                       48
49
Ambientes Virtuales

•Laboratorios   Virtuales
•Atlas
     Digital
•Ambientes Virtuales Multiusuarios




                                     50
Laboratorios Virtuales
Alan Kay, describe como laboratorio virtual, la aplicación
de computadoras a la enseñanza de química, física, biología
y disciplinas semejantes, donde los experimentos pueden
ser peligrosos o incosteables. Por medio de la simulación
del laboratorio permite que los estudiantes aprendan por
experimentación simulada.
A la gente le resulta difícil comprender y visualizar los
conceptos matemáticos en los que se basan los fenómenos
físicos, es por ello que los realizadores de cursos
(tutoriales) intentan en sus cometidos evocar e implantar
imágenes visuales que puedan ayudar a comprender
conceptos abstractos.                                 51
Laboratorio Virtual
Atlas Digital (Google Earth)




                               53
Mundos Virtuales




                   54
55
56
57
58
Templo de Budha




                  59
Animación Informática
Creación de la ilusión del movimiento al visionar una
sucesión de imágenes fijas generadas por ordenador.
Una serie de imágenes que cambian muy ligera y
rápidamente, una tras otra, parecen mezclarse creando
la ilusión de movimiento.
La animación es posible debido a un fenómeno
biológico conocido como persistencia de la visión.


                                                  60
Antes de la llegada de las computadoras, la
animación se realizaba filmando secuencias
dibujadas o pintadas manualmente sobre
plástico o papel, denominados celuloides;
cada fotograma se creaba de manera
independiente. Al principio, las computadoras
se utilizaron para controlar los movimientos
de la obra artística y simular la cámara.



                                                61
La animación informática se puede utilizar para
crear efectos especiales y para simular imágenes
imposibles de generar con otras técnicas; un
ejemplo es la película Episodio I. La amenaza
fantasma (1999), que incluye numerosos personajes
y escenarios creados informáticamente; otro
ejemplo es la película Gasparín (1987), en la cual se
crearon por computadora las imágenes de los
fantasmas utilizando técnicas de geometría fractal.



                                                  62
La animación informática también puede generar
imágenes para obtener datos científicos; así, se ha
utilizado para visualizar grandes cantidades de datos
en el estudio de las interacciones de sistemas
complejos, como la dinámica de fluidos, sistemas
planetarios, las colisiones de partículas y el
desarrollo de tormentas. Estos modelos de base
matemática utilizan la animación para ayudar a los
investigadores a visualizar relaciones. La animación
informática ha sido empleada también en casos
judiciales para la reconstrucción de accidentes.
                                                  63
Como funciona la animación
          informática
En la animación tradicional de fotograma a fotograma,
la ilusión de movimiento se crea filmando una
secuencia de celuloides pintados a mano y, a
continuación, proyectando las imágenes a mayor
velocidad, por lo general de 15 a 30 fotogramas por
segundo. En animación informática, las ilustraciones
se crean mediante programas informáticos, fotograma
a fotograma y, a continuación, se modifican y se
reproducen
                                                  64
A pesar de la potencia de las computadoras actuales y de
las innovaciones utilizadas para acelerar los procesos de
animación tradicionales, las animaciones informatizadas
modernas requieren computadoras aún más rápidas y
potentes para aprovechar las nuevas técnicas y efectos
potencialmente fotorrealistas. En el largometraje animado
de Disney Toy Story (1995), los estudios de animación
PIXAR emplearon una media de 3 horas en calcular cada
fotograma, y algunos requirieron hasta 24 horas. Para esta
película de 77 minutos, se generaron 110.880 fotogramas.
Se emplearon técnicas de computación distribuida; una
sola estación de trabajo hubiera tardado 38 años.
Situación similar del film Finding Nemo (1998).
                                                     65
Animación en tiempo real
Otra técnica infográfica es la animación en tiempo real,
en la que los fotogramas son creados por la computadora
y se proyectan inmediatamente en la pantalla de la
computadora. Esta técnica elimina la fase intermedia de
digitalización de las imágenes. No obstante, en la
actualidad la animación en tiempo real no es capaz de
producir resultados de alta calidad o con gran riqueza de
detalles. Es más adecuada para la creación de
animaciones simples y de juegos de computadora.
Caso especial, la pelicula animada de Dream Works
“Madagaskar”
                                                     66

Comp graf(2) marzo11

  • 1.
    Tipos de Transformaciones  Transformaciones intrínsecas: – Operan individualmente en cada objeto (coordenadas locales).  Transformaciones de modelaje: – Emplazan un objeto (coordenadas locales) en una escena (coordenadas globales).  Transformaciones de visualización: – Se aplica a escenas (coordenadas globales), para definir condiciones de visualización (coordenadas de visualización). 1
  • 2.
    Transformaciones Afines  Lastransformaciones pueden ser representadas por una matriz.  Técnicamente, están compuestas por cualquier combinación de transformaciones lineales: traslación, escalamiento, rotación, deformación.  Las transformaciones afines usan un sistema homogeneo de coordenadas. 2
  • 3.
    Traslación V D.V x 1 0 0 dx x y 0 1 0 dy y . z 0 0 1 dz z 1 0 0 0 1 1 3
  • 4.
    Traslación en elPlano XY x x x y y y z z 4
  • 5.
    Escalamiento V E.V x ex 0 0 0 x y 0 ey 0 0 y . z 0 0 ez 0 z 1 0 0 0 1 1 5
  • 6.
    Escalamiento a loLargo de Eje X x 2. x y y z z 6
  • 7.
    Escalamiento y Traslación x ex ( x ) x y ey ( y) y z ez ( z ) z 7
  • 8.
    Reflexión Alrededor delEje X (Caso Especial de Escalamiento) x x y y z z 8
  • 9.
    Rotación Antihoraria Alrededorde los Ejes X, Y y Z x x 1 0 0 0 y y 0 cos sen 0 R. Rx z z 0 sen cos 0 1 1 0 0 0 1 cos 0 sen 0 cos sen 0 0 0 1 0 0 sen cos 0 0 Ry Rz sen 0 cos 0 0 0 1 0 0 0 0 1 0 0 0 1 9
  • 10.
    Rotación Antihoraria Alrededor delEje Z x x. cos y.sen y x.sen y. cos z z 10
  • 11.
    Rotación General (Alrededor de Eje en Objeto) Traslación x (x x) cos (y y ) sen x y (x x) sen (y y ) cos y Rotación z z Traslación 11
  • 12.
    Deformación: Estrechamiento  Escalamiento gradual: e 0 0 0 x 0 e 0 0 y V . 0 0 1 0 z 0 0 0 1 1 e f ( z ) (lineal o no lineal) 12
  • 13.
  • 14.
    Deformación: Torsión  Rotación diferenciada: cos sen 0 0 x sen cos 0 0 y V . 0 0 1 0 z 0 0 0 1 1 f ( z) (ángulo de giro / unidad de longitud) 14
  • 15.
  • 16.
  • 17.
    Vectores  Segmentos de línea que tienen magnitud y dirección. P ( x1 , y1 , z1 ) z Q ( x2 , y 2 , z 2 ) PQ a ( x2 x1 , y2 y1 , z 2 z1 ) a3 a a1 , a2 , a3 a P Q a a1 i a2 j a3 k a1 a2 a a12 2 a2 2 a3 a x y na (Vector normalizado) a 17
  • 18.
    Funciones Vectoriales  Funciones continuas de dominio un intervalo Real y codominio un subconjunto del espacio. n F : [ a, b] R R F (t ) f1 (t ), f 2 (t ),..., f n (t ) F (t ) f1 (t ) i f 2 (t ) j ... f n (t ) k Donde las fi son funciones reales 18
  • 19.
    Ecuaciones de Segmentos Formaexplícita : y 1 (x2,y2) y f ( x) mx q o x g ( y) ( y q) m y y1 y2 y1 (x,y) B m tan x x1 x2 x1 Forma implícita : f ( x, y ) 0 ax by c 0 (x1,y1) ( x2 x1 ) y ( y2 y1 ) x x1 y2 x2 y1 0 A Forma Vectorial (Segmento AB) : F : [0,1] R2 x F (t ) [ x1t (1 t ) x2 , y1t (1 t ) y2 ] 19
  • 20.
    Rayos  Un rayose define como un segmento de línea que posee posición, magnitud y dirección.  El rayo es una entidad muy importante en graficación computarizada ya que permite simular la luz como un haz infinitesimalmente delgado. 20
  • 21.
    Geometría de Rayos Debido a que el rayo simula la trayectoria que sigue la luz en un entorno, la operación más común es la prueba de intersección.  Estas operaciones son muy costosas por lo que una técnica más eficiente es encerrar los objetos dentro de volúmenes contenedores, como una esfera o una caja, antes de probar si hay intersecciones. 21
  • 22.
    Representación y Modelaje de Objetos 3D  Creación de una representación gráfica 3D por computadora.  Técnica, método o estructura de datos usada para representar el objeto.  Manipulación de la representación, en particular, cambiar la forma de un modelo existente. 22
  • 23.
    Representación de Objetos  La representación que se escoja para un objeto, depende de: – La naturaleza del objeto. – La técnica que se utilice para crear el objeto. – De la aplicación. Todos estos factores están interrelacionados. 23
  • 24.
    Principales Modelos  Poligonal. Geometría sólida constructiva.  Técnicas de subdivisión espacial.  Parches bi-cúbicos paramétricos 24
  • 25.
  • 26.
  • 27.
    Creación de ObjetosPoligonales  Digitalización 3D manual.  Explorador laser.  Descripción matemática.  Geometría fractal. 27
  • 28.
    Geometría Sólida Constructiva Representación compleja de alto nivel, orientada al usuario.  Requiere de técnicas especiales de presentación o la conversión a una malla poligonal previo a su presentación.  Utiliza metáfora de bloques constructivos 3D y operaciones de combinación. 28
  • 29.
  • 30.
    Parches Bi-cúbicos Paramétricos Base para diseño interactivo en CAD.  Representación alternativa a la malla de polígonos. – Representación analítica exacta. – Facilidad de edición de forma 3D. – Representación más económica. 30
  • 31.
    Elementos Bi-cúbicos  Curvas racionales: – Curvas Bézier Racionales. – NURBS (B-Splines Racionales No-Uniformes).  Parches: – Superficie Bézier. – Superficie B-spline. 31
  • 32.
    Curvas Bézier Continuidad Posicional Continuidad Tangencial 32
  • 33.
  • 34.
  • 35.
    Modelo de Parchesy Presentación Resultante 35
  • 36.
    Fotorealismo  Conjunto detécnicas para que una imagen gráfica de un objeto o escena sea indistinguible de una imagen de televisión o fotografía.  Principales campos de aplicación actual: – Medicina – Ciencia e – Ingeniería 36
  • 37.
    Fundamentos del Fotorealismo  Cálculo de la interacción luz – objeto: – Modelos de Reflexión Directa o Local.- Consideran que el objeto y la fuente de luz, se encuentran flotando en un espacio oscuro. Sólo se incluye la primera reflexión de luz desde el objeto. – Modelos de Interacción Global.- Consideran que la luz incidente en cualquier objeto puede ser, a más de la luz directa, luz indirecta o reflejada por otros objetos en el entorno. 37
  • 38.
    Modelo de Reflexióncon Interacción Local  Remoción de superficies escondidas: – Algoritmo Z-Buffer.- Fácil de implementar y combinar con algoritmos de sombreado y presentación (rendering)  Sombreado de imágenes: – Modelo de Reflexión de Phong.- Es un modelo empírico, fácil de implementar, que usualmente resulta con un objeto reflejando más luz de la que recibe. A pesar de esto, es el modelo más utilizado en graficación computarizada. – Algoritmos de sombreado y texturizado. 38
  • 39.
  • 40.
    Modelo de InteracciónGlobal  Trazado de Rayos – Técnica que trata de perfeccionar la reflexión especular (objetos brillantes reflejando a otros)  Radiosidad – Técnica que modela la interacción difusa, esto es luz reflejada por superficies color mate, que iluminan otras superficies. 40
  • 41.
    Escena con Trazadode Rayos y Radiosidad 41
  • 42.
  • 43.
    Procesamiento de Imágenes Elprocesamiento digital de imágenes es el conjunto de técnicas que se aplican a las imágenes digitales con el objetivo de mejorar la calidad o facilitar la búsqueda de información 43
  • 44.
    Proceso de Filtrado Esel conjunto de técnicas englobadas dentro del preprocesamiento de imágenes cuyo objetivo fundamental es obtener, a partir de una imagen origen, otra final cuyo resultado sea más adecuado para una aplicación específica mejorando ciertas características de la misma que posibilite efectuar operaciones del procesado sobre ella. 44
  • 45.
    Objetivos del Filtrado • Suavizar la imagen: reducir la cantidad de variaciones de intensidad entre píxeles vecinos. • Eliminar ruido: eliminar aquellos píxeles cuyo nivel de intensidad es muy diferente al de sus vecinos y cuyo origen puede estar tanto en el proceso de adquisición de la imagen como en el de transmisión. 45
  • 46.
    Objetivos del Filtrado • Realzar bordes: destacar los bordes que se localizan en una imagen. • Detectar bordes: detectar los píxeles donde se produce un cambio brusco en la función intensidad. 46
  • 47.
    Filtrado en eldominio de frecuencia 1. Se aplica la Transformada de Fourier 2. Se multiplica posteriormente por la función del filtro que ha sido escogido. 3. Para concluir re-transformándola al dominio espacial empleando la Transformada Inversa de Fourier. Teorema de la Convolución (frecuencia): G(u,v) = F(u,v) * H(u,v) F(u,v): transformada de Fourier de la imagen original H(u,v): filtro atenuador de frecuencias 47
  • 48.
    Filtrado en eldominio del espacio Las operaciones de filtrado se llevan a cabo directamente sobre los píxeles de la imagen. En este proceso se relaciona, para todos y cada uno de los puntos de la imagen, un conjunto de píxeles próximos al píxel objetivo con la finalidad de obtener una información útil, dependiente del tipo de filtro aplicado, que permita actuar sobre el píxel concreto en que se está llevando a cabo el proceso de filtrado para, de este modo, obtener mejoras sobre la imagen y/o datos que podrían ser utilizados en futuras acciones o procesos de trabajo sobre ella. 48
  • 49.
  • 50.
    Ambientes Virtuales •Laboratorios Virtuales •Atlas Digital •Ambientes Virtuales Multiusuarios 50
  • 51.
    Laboratorios Virtuales Alan Kay,describe como laboratorio virtual, la aplicación de computadoras a la enseñanza de química, física, biología y disciplinas semejantes, donde los experimentos pueden ser peligrosos o incosteables. Por medio de la simulación del laboratorio permite que los estudiantes aprendan por experimentación simulada. A la gente le resulta difícil comprender y visualizar los conceptos matemáticos en los que se basan los fenómenos físicos, es por ello que los realizadores de cursos (tutoriales) intentan en sus cometidos evocar e implantar imágenes visuales que puedan ayudar a comprender conceptos abstractos. 51
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
    Animación Informática Creación dela ilusión del movimiento al visionar una sucesión de imágenes fijas generadas por ordenador. Una serie de imágenes que cambian muy ligera y rápidamente, una tras otra, parecen mezclarse creando la ilusión de movimiento. La animación es posible debido a un fenómeno biológico conocido como persistencia de la visión. 60
  • 61.
    Antes de lallegada de las computadoras, la animación se realizaba filmando secuencias dibujadas o pintadas manualmente sobre plástico o papel, denominados celuloides; cada fotograma se creaba de manera independiente. Al principio, las computadoras se utilizaron para controlar los movimientos de la obra artística y simular la cámara. 61
  • 62.
    La animación informáticase puede utilizar para crear efectos especiales y para simular imágenes imposibles de generar con otras técnicas; un ejemplo es la película Episodio I. La amenaza fantasma (1999), que incluye numerosos personajes y escenarios creados informáticamente; otro ejemplo es la película Gasparín (1987), en la cual se crearon por computadora las imágenes de los fantasmas utilizando técnicas de geometría fractal. 62
  • 63.
    La animación informáticatambién puede generar imágenes para obtener datos científicos; así, se ha utilizado para visualizar grandes cantidades de datos en el estudio de las interacciones de sistemas complejos, como la dinámica de fluidos, sistemas planetarios, las colisiones de partículas y el desarrollo de tormentas. Estos modelos de base matemática utilizan la animación para ayudar a los investigadores a visualizar relaciones. La animación informática ha sido empleada también en casos judiciales para la reconstrucción de accidentes. 63
  • 64.
    Como funciona laanimación informática En la animación tradicional de fotograma a fotograma, la ilusión de movimiento se crea filmando una secuencia de celuloides pintados a mano y, a continuación, proyectando las imágenes a mayor velocidad, por lo general de 15 a 30 fotogramas por segundo. En animación informática, las ilustraciones se crean mediante programas informáticos, fotograma a fotograma y, a continuación, se modifican y se reproducen 64
  • 65.
    A pesar dela potencia de las computadoras actuales y de las innovaciones utilizadas para acelerar los procesos de animación tradicionales, las animaciones informatizadas modernas requieren computadoras aún más rápidas y potentes para aprovechar las nuevas técnicas y efectos potencialmente fotorrealistas. En el largometraje animado de Disney Toy Story (1995), los estudios de animación PIXAR emplearon una media de 3 horas en calcular cada fotograma, y algunos requirieron hasta 24 horas. Para esta película de 77 minutos, se generaron 110.880 fotogramas. Se emplearon técnicas de computación distribuida; una sola estación de trabajo hubiera tardado 38 años. Situación similar del film Finding Nemo (1998). 65
  • 66.
    Animación en tiemporeal Otra técnica infográfica es la animación en tiempo real, en la que los fotogramas son creados por la computadora y se proyectan inmediatamente en la pantalla de la computadora. Esta técnica elimina la fase intermedia de digitalización de las imágenes. No obstante, en la actualidad la animación en tiempo real no es capaz de producir resultados de alta calidad o con gran riqueza de detalles. Es más adecuada para la creación de animaciones simples y de juegos de computadora. Caso especial, la pelicula animada de Dream Works “Madagaskar” 66