UNIVERSIDAD TECNOLÓGICA DE TORREÓN




             PROCESOS INDUSTRIALES


Conceptos:
Distribución Binomial
Distribución de Bernoulli
Distribución Gamma
Distribución Poisson
Distribución Normal
Distribución T de Student


                        Monserrat Pantoja Castellanos
                                               2 “A”
DISTRIBUCIÓN BINOMIAL

La distribución binomial esta asociada a experimentos del siguiente tipo:

- Realizamos n veces cierto experimento en el que consideramos solo la
posibilidad de éxito o fracaso.

- La obtención de éxito o fracaso en cada ocasión es independiente de la
obtención de éxito o

Fracaso en las demás ocasiones.

- La probabilidad de obtener ´éxito o fracaso siempre es la misma en cada
ocasión.

Ejemplo

Tiramos un dado 7 veces y contamos el numero de cincos que obtenemos. ¿Cual
es la probabilidad de obtener tres cincos?.

Este es un típico ejemplo de distribución binomial, pues estamos repitiendo 7
veces el experimento de lanzar un dado. ¿Cual es nuestro ´éxito?

Evidentemente, sacar un 5, que es en lo que nos fijamos.

El fracaso, por tanto, seria no sacar 5, sino sacar cualquier otro número.



Por tanto, Éxito = E = “sacar un 5” = ´ ⇒p(E) =1



6



Fracaso = F = “no sacar un 5” =⇒p(F) =5



6

Para calcular la probabilidad que nos piden, observemos que nos dicen que
sacamos 3 cincos y por lo tanto tenemos 3 ´éxitos y 4 fracasos, ¿de cuantas
maneras pueden darse estas posibilidades?.
Podríamos sacar 3 cincos en las 3 primeras tiradas y luego 4 tiradas sin sacar
cinco, es decir: EEEFFFF

Pero también podríamos sacar EFEFFFE, es decir que en realidad estamos
calculando la E es éxito y la F es fracaso



                    DISTRIBUCIÓN DE BERNOULLI

En teoría de probabilidad y estadística, la distribución de Bernoulli (o
distribución dicotómica), nombrada así por el matemático y científico suizo
Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1
para la probabilidad de éxito p y valor 0 para la probabilidad de fracaso q = 1 −
p. Por lo tanto, si X es una variable aleatoria con esta distribución.

Consiste en realizar un experimento aleatorio una sóla vez y observar si cierto
suceso ocurre o no, siendo p la probabilidad de que esto sea así (éxito) y q=1-
p el que no lo sea (fracaso).

Existen muchas situaciones en las que se presenta una experiencia binomial.
Cada uno de los experimentos es independiente de los restantes (la
probabilidad del resultado de un experimento no depende del resultado del
resto). El resultado de cada experimento ha de admitir sólo dos categorías (a
las que se denomina éxito y fracaso). Las probabilidades de ambas
posibilidades han de ser constantes en todos los experimento.




                         DISTRIBUCIÓN GAMMA

Es una distribución adecuada para modelizar el comportamiento de variables
aleatorias continuas con asimetría positiva. Es decir, variables que presentan
una mayor densidad de sucesos a la izquierda de la media que a la derecha. En
su expresión se encuentran dos parámetros, siempre positivos, (α) alfa y (β)
beta de los que depende su forma y alcance por la derecha, y también la
función Gamma Γ(α), responsable de la convergencia de la distribución.

Los parámetros de la distribución
El primer parámetro (α) sitúa la máxima intensidad de probabilidad y por este
motivo en algunas fuentes se denomina “la forma” de la distribución: cuando se
toman valores próximos a cero aparece entonces un dibujo muy similar al de la
distribución exponencial. Cuando se toman valores más grandes de (α) el centro
de la distribución se desplaza a la derecha y va apareciendo la forma de una
campana de Gauss con asimetría positiva. Es el segundo parámetro (β) el que
determina la forma o alcance de esta asimetría positiva desplazando la
densidad de probabilidad en la cola de la derecha. Para valores elevados de (β)
la distribución acumula más densidad de probabilidad en el extremo derecho de
la cola, alargando mucho su dibujo y dispersando la probabilidad a lo largo del
plano. Al dispersar la probabilidad la altura máxima de densidad de
probabilidad se va reduciendo; de aquí que se le denomine “escala”. Valores más
pequeños de (β) conducen a una figura más simétrica y concentrada, con un pico
de densidad de probabilidad más elevado. Una forma de interpretar (β) es
“tiempo promedio entre ocurrencia de un suceso”. Relacionándose con el
parámetro de la Poisson como β=1/λ. Alternativamente λ será el ratio de
ocurrencia: λ=1/β. La expresión    también será necesaria más adelante para
poder llevar a cabo el desarrollo matemático.

La distribución gamma se puede caracterizar del modo siguiente: si se está
interesado en la ocurrencia de un evento generado por un proceso de Poisson
de media lambda, la variable que mide el tiempo transcurrido hasta obtener n
ocurrencias del evento sigue una distribución gamma con parámetros
a=n×lambda (escala) y p=n (forma). Se denota Gamma(a,p).

Por ejemplo, la distribución gamma aparece cuando se realiza el estudio de la
duración de elementos físicos (tiempo de vida).

Esta distribución presenta como propiedad interesante la “falta de memoria”.
Por esta razón, es muy utilizada en las teorías de la fiabilidad, mantenimiento y
fenómenos de espera (por ejemplo en una consulta médica “tiempo que
transcurre hasta la llegada del segundo paciente”), la teoría de la cola,
electricidad, procesos industriales.
DISRIBUCION DE POISSON

En teoría   de    probabilidad y estadística,   la distribución   de   Poisson es
una distribución de probabilidad discreta que expresa, a partir de una
frecuencia de ocurrencia media, la probabilidad que ocurra un determinado
número de eventos durante cierto periodo de tiempo.

La función de masa de la distribución de Poisson es




Donde

k es el número de ocurrencias del evento o fenómeno (la función nos da la
probabilidad de que el evento suceda precisamente k veces).

λ es un parámetro positivo que representa el número de veces que se espera
que ocurra el fenómeno durante un intervalo dado. Por ejemplo, si el suceso
estudiado tiene lugar en promedio 4 veces por minuto y estamos interesados en
la probabilidad de que ocurra k veces dentro de un intervalo de 10 minutos,
usaremos un modelo de distribución de Poisson con λ = 10×4 = 40.

e es la base de los logaritmos naturales (e = 2,71828 ...)
Tanto el valor esperado como la varianza de una variable aleatoria con
distribución de Poisson son iguales a λ. Los momentos de orden superior
son polinomios de Touchard en λ cuyos coeficientes tienen una
interpretación combinatorio. De hecho, cuando el valor esperado de la
distribución de Poisson es 1, entonces según la fórmula de Dobinski, el n-ésimo
momento iguala al número de particiones de tamaño n.
La moda de una variable aleatoria de distribución de Poisson con un λ no entero
es igual a , el mayor de los enteros menores que λ (los símbolos representan
la función parte entera). Cuando λ es un entero positivo, las modas son λ y λ − 1.
La función generadora de momentos de la distribución de Poisson con valor
esperado λ es




Las variables aleatorias de Poisson tienen la propiedad de ser infinitamente
divisibles.
La divergencia Kullback-Leibler desde una variable aleatoria de Poisson de
parámetro λ0 a otra de parámetro λ es




¿Para qué sirve conocer que algo es Poisson?

Porque si se tiene caracterizado el comportamiento probabilístico de un
fenómeno aleatorio, podemos contestar preguntas como:

   •   Qué probabilidad hay de que lleguen más de 15 clientes al banco en un
       intervalo de 5 minutos de duración
   •   Qué probabilidad hay de que suceda por lo menos una falla en un tramo
       de 1km de tubería de gas
   •   Qué probabilidad hay de que en un estanque de cultivo de camarón, haya
       más de media tonelada
   •   Qué probabilidad hay de que en un área de 1km se encuentren más de 3
       brotes de una enfermedad

¿Por qué algunas cosas supimos de antemano que iban a ser Poisson y que otras
no?

Porque los fenómenos que son procesos de Poisson en la línea o en el tiempo, en
la superficie, o en el espacio, tienen algunas características que
matemáticamente la delatan, como son:

   •   Que se está contando el número de eventos que suceden en un área (o
       intervalo de tiempo, o volumen) determinada.
   •   Que la probabilidad de que suceda un evento sobre un área muy pequeña,
       es también muy pequeña.
•   Que en un mismo lugar (o en el mismo tiempo), no pueden suceder más de
       uno solo de los eventos que se están contando.
   •   Que si se duplica el tamaño de la superficie (intervalo de tiempo, etc.),
       entonces se duplica la probabilidad de registrar ahí un evento.




Notas y conclusiones

   •   Los ejemplos vistos de procesos de Poisson, son homogéneos en el
       sentido de que la probabilidad de que suceda un evento no varía según la
       posición sobre el espacio. Existen también procesos de Poisson que son
       heterogéneos.
   •   Se concluye que los fenómenos aleatorios no son tan impredecibles como
       se pudiera pensar. Que en efecto, muestran un concepto llamado
       regularidad estadística, que es la que hace que éstos se puedan estudiar
       matemáticamente.
   •   Que un observador de un fenómeno aleatorio, no puede esperar más que
       cuantificar la posibilidad de que el mismo suceda.




                        DISTRIBUCIÓN NORMAL

Se le llama distribución normal, distribución de Gauss o distribución gaussiana,
a una de las distribuciones de probabilidad de variable continua que con más
frecuencia aparece aproximada en fenómenos reales.

La gráfica de su función de densidad tiene una forma acampanada y es
simétrica respecto de un determinado parámetro. Esta curva se conoce como
campana de Gauss y e es el gráfico de una función gaussiana.


Ejemplo     de     alguna
grafica seria:
DISTRUBUCION T- STUDENT



En probabilidad y estadística, la distribución t (de Student) es una distribución
de   probabilidad que    surge   del   problema    de estimar la media de    una
población normalmente distribuida cuando el tamaño de la muestra es pequeño.

Aparece de manera natural al realizar la prueba t de Student para la
determinación de las diferencias entre dos medias muéstrales          y para la
construcción del intervalo de confianza para la diferencia entre las medias de
dos poblaciones cuando se desconoce la desviación típica de una población y
ésta debe ser estimada a partir de los datos de una muestra.

La distribución de Student fue descrita en 1908 por William Sealy Gosset.
Gosset trabajaba en una fábrica de cerveza, Guinness, que prohibía a sus
empleados la publicación de artículos científicos debido a una difusión previa
de secretos industriales. De ahí que Gosset publicase sus resultados bajo
el seudónimo de Student.

Conceptos de distribuciones

  • 1.
    UNIVERSIDAD TECNOLÓGICA DETORREÓN PROCESOS INDUSTRIALES Conceptos: Distribución Binomial Distribución de Bernoulli Distribución Gamma Distribución Poisson Distribución Normal Distribución T de Student Monserrat Pantoja Castellanos 2 “A”
  • 2.
    DISTRIBUCIÓN BINOMIAL La distribuciónbinomial esta asociada a experimentos del siguiente tipo: - Realizamos n veces cierto experimento en el que consideramos solo la posibilidad de éxito o fracaso. - La obtención de éxito o fracaso en cada ocasión es independiente de la obtención de éxito o Fracaso en las demás ocasiones. - La probabilidad de obtener ´éxito o fracaso siempre es la misma en cada ocasión. Ejemplo Tiramos un dado 7 veces y contamos el numero de cincos que obtenemos. ¿Cual es la probabilidad de obtener tres cincos?. Este es un típico ejemplo de distribución binomial, pues estamos repitiendo 7 veces el experimento de lanzar un dado. ¿Cual es nuestro ´éxito? Evidentemente, sacar un 5, que es en lo que nos fijamos. El fracaso, por tanto, seria no sacar 5, sino sacar cualquier otro número. Por tanto, Éxito = E = “sacar un 5” = ´ ⇒p(E) =1 6 Fracaso = F = “no sacar un 5” =⇒p(F) =5 6 Para calcular la probabilidad que nos piden, observemos que nos dicen que sacamos 3 cincos y por lo tanto tenemos 3 ´éxitos y 4 fracasos, ¿de cuantas maneras pueden darse estas posibilidades?.
  • 3.
    Podríamos sacar 3cincos en las 3 primeras tiradas y luego 4 tiradas sin sacar cinco, es decir: EEEFFFF Pero también podríamos sacar EFEFFFE, es decir que en realidad estamos calculando la E es éxito y la F es fracaso DISTRIBUCIÓN DE BERNOULLI En teoría de probabilidad y estadística, la distribución de Bernoulli (o distribución dicotómica), nombrada así por el matemático y científico suizo Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1 para la probabilidad de éxito p y valor 0 para la probabilidad de fracaso q = 1 − p. Por lo tanto, si X es una variable aleatoria con esta distribución. Consiste en realizar un experimento aleatorio una sóla vez y observar si cierto suceso ocurre o no, siendo p la probabilidad de que esto sea así (éxito) y q=1- p el que no lo sea (fracaso). Existen muchas situaciones en las que se presenta una experiencia binomial. Cada uno de los experimentos es independiente de los restantes (la probabilidad del resultado de un experimento no depende del resultado del resto). El resultado de cada experimento ha de admitir sólo dos categorías (a las que se denomina éxito y fracaso). Las probabilidades de ambas posibilidades han de ser constantes en todos los experimento. DISTRIBUCIÓN GAMMA Es una distribución adecuada para modelizar el comportamiento de variables aleatorias continuas con asimetría positiva. Es decir, variables que presentan una mayor densidad de sucesos a la izquierda de la media que a la derecha. En su expresión se encuentran dos parámetros, siempre positivos, (α) alfa y (β) beta de los que depende su forma y alcance por la derecha, y también la función Gamma Γ(α), responsable de la convergencia de la distribución. Los parámetros de la distribución
  • 4.
    El primer parámetro(α) sitúa la máxima intensidad de probabilidad y por este motivo en algunas fuentes se denomina “la forma” de la distribución: cuando se toman valores próximos a cero aparece entonces un dibujo muy similar al de la distribución exponencial. Cuando se toman valores más grandes de (α) el centro de la distribución se desplaza a la derecha y va apareciendo la forma de una campana de Gauss con asimetría positiva. Es el segundo parámetro (β) el que determina la forma o alcance de esta asimetría positiva desplazando la densidad de probabilidad en la cola de la derecha. Para valores elevados de (β) la distribución acumula más densidad de probabilidad en el extremo derecho de la cola, alargando mucho su dibujo y dispersando la probabilidad a lo largo del plano. Al dispersar la probabilidad la altura máxima de densidad de probabilidad se va reduciendo; de aquí que se le denomine “escala”. Valores más pequeños de (β) conducen a una figura más simétrica y concentrada, con un pico de densidad de probabilidad más elevado. Una forma de interpretar (β) es “tiempo promedio entre ocurrencia de un suceso”. Relacionándose con el parámetro de la Poisson como β=1/λ. Alternativamente λ será el ratio de ocurrencia: λ=1/β. La expresión también será necesaria más adelante para poder llevar a cabo el desarrollo matemático. La distribución gamma se puede caracterizar del modo siguiente: si se está interesado en la ocurrencia de un evento generado por un proceso de Poisson de media lambda, la variable que mide el tiempo transcurrido hasta obtener n ocurrencias del evento sigue una distribución gamma con parámetros a=n×lambda (escala) y p=n (forma). Se denota Gamma(a,p). Por ejemplo, la distribución gamma aparece cuando se realiza el estudio de la duración de elementos físicos (tiempo de vida). Esta distribución presenta como propiedad interesante la “falta de memoria”. Por esta razón, es muy utilizada en las teorías de la fiabilidad, mantenimiento y fenómenos de espera (por ejemplo en una consulta médica “tiempo que transcurre hasta la llegada del segundo paciente”), la teoría de la cola, electricidad, procesos industriales.
  • 5.
    DISRIBUCION DE POISSON Enteoría de probabilidad y estadística, la distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad que ocurra un determinado número de eventos durante cierto periodo de tiempo. La función de masa de la distribución de Poisson es Donde k es el número de ocurrencias del evento o fenómeno (la función nos da la probabilidad de que el evento suceda precisamente k veces). λ es un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo dado. Por ejemplo, si el suceso estudiado tiene lugar en promedio 4 veces por minuto y estamos interesados en la probabilidad de que ocurra k veces dentro de un intervalo de 10 minutos, usaremos un modelo de distribución de Poisson con λ = 10×4 = 40. e es la base de los logaritmos naturales (e = 2,71828 ...) Tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales a λ. Los momentos de orden superior son polinomios de Touchard en λ cuyos coeficientes tienen una interpretación combinatorio. De hecho, cuando el valor esperado de la distribución de Poisson es 1, entonces según la fórmula de Dobinski, el n-ésimo momento iguala al número de particiones de tamaño n. La moda de una variable aleatoria de distribución de Poisson con un λ no entero es igual a , el mayor de los enteros menores que λ (los símbolos representan la función parte entera). Cuando λ es un entero positivo, las modas son λ y λ − 1.
  • 6.
    La función generadorade momentos de la distribución de Poisson con valor esperado λ es Las variables aleatorias de Poisson tienen la propiedad de ser infinitamente divisibles. La divergencia Kullback-Leibler desde una variable aleatoria de Poisson de parámetro λ0 a otra de parámetro λ es ¿Para qué sirve conocer que algo es Poisson? Porque si se tiene caracterizado el comportamiento probabilístico de un fenómeno aleatorio, podemos contestar preguntas como: • Qué probabilidad hay de que lleguen más de 15 clientes al banco en un intervalo de 5 minutos de duración • Qué probabilidad hay de que suceda por lo menos una falla en un tramo de 1km de tubería de gas • Qué probabilidad hay de que en un estanque de cultivo de camarón, haya más de media tonelada • Qué probabilidad hay de que en un área de 1km se encuentren más de 3 brotes de una enfermedad ¿Por qué algunas cosas supimos de antemano que iban a ser Poisson y que otras no? Porque los fenómenos que son procesos de Poisson en la línea o en el tiempo, en la superficie, o en el espacio, tienen algunas características que matemáticamente la delatan, como son: • Que se está contando el número de eventos que suceden en un área (o intervalo de tiempo, o volumen) determinada. • Que la probabilidad de que suceda un evento sobre un área muy pequeña, es también muy pequeña.
  • 7.
    Que en un mismo lugar (o en el mismo tiempo), no pueden suceder más de uno solo de los eventos que se están contando. • Que si se duplica el tamaño de la superficie (intervalo de tiempo, etc.), entonces se duplica la probabilidad de registrar ahí un evento. Notas y conclusiones • Los ejemplos vistos de procesos de Poisson, son homogéneos en el sentido de que la probabilidad de que suceda un evento no varía según la posición sobre el espacio. Existen también procesos de Poisson que son heterogéneos. • Se concluye que los fenómenos aleatorios no son tan impredecibles como se pudiera pensar. Que en efecto, muestran un concepto llamado regularidad estadística, que es la que hace que éstos se puedan estudiar matemáticamente. • Que un observador de un fenómeno aleatorio, no puede esperar más que cuantificar la posibilidad de que el mismo suceda. DISTRIBUCIÓN NORMAL Se le llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece aproximada en fenómenos reales. La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro. Esta curva se conoce como campana de Gauss y e es el gráfico de una función gaussiana. Ejemplo de alguna grafica seria:
  • 8.
    DISTRUBUCION T- STUDENT Enprobabilidad y estadística, la distribución t (de Student) es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida cuando el tamaño de la muestra es pequeño. Aparece de manera natural al realizar la prueba t de Student para la determinación de las diferencias entre dos medias muéstrales y para la construcción del intervalo de confianza para la diferencia entre las medias de dos poblaciones cuando se desconoce la desviación típica de una población y ésta debe ser estimada a partir de los datos de una muestra. La distribución de Student fue descrita en 1908 por William Sealy Gosset. Gosset trabajaba en una fábrica de cerveza, Guinness, que prohibía a sus empleados la publicación de artículos científicos debido a una difusión previa de secretos industriales. De ahí que Gosset publicase sus resultados bajo el seudónimo de Student.