先说结论:还是应该一步步脚踏实地的做好企业数智化的基础工作,先从解决数据资产入库形成数据资产池入手
再说为什么我做不了
1.目前企业现状
数据孤岛问题
企业内部的数据往往分散在不同的系统和部门中,形成“数据孤岛”,这使得智能体难以获取全面且高质量的数据。
2019年的调研报告指出,超九成中国企业内部存在数据孤岛现象
2023年的全国数据资源调查报告显示,企业数据存储呈现出分散化的特点,尤其是行业重点企业的数据终端存储占比超过七成
2024年的调研也指出,企业数据多场景、多主体协同难度大,数据管理和复用水平较低
这表明数据分散在不同系统和部门是大多数国内企业面临的普遍问题,尤其在中小企业中,数据管理和复用能力相对薄弱
具体到Ewangda公司所管理的系统就有:OA办公系统,ERP财务系统,CRM客户管理系统,还有自研供应链平台等
数据质量问题
数据的不一致性、不完整性和不准确性,不仅会影响智能体的决策能力,还可能导致错误的业务决策。此外,数据隐私和安全问题也是企业必须面对的挑战,尤其是在涉及敏感信息时。
2.技术门槛与成本问题
企业智能体的实现依赖于复杂的人工智能技术,尤其是大模型的应用。这些技术不仅需要大量的计算资源,还对企业的技术基础设施和专业人才提出了极高要求。中小企业往往因缺乏足够的资金和技术积累,难以承担高昂的开发和维护成本。此外,智能体的开发和部署需要专业的数据科学家和工程师团队,而这类人才在市场上的稀缺性进一步限制了企业的应用能力
技术门槛
算力需求与瓶颈:企业智能体尤其是基于大模型的应用,对计算资源需求极高。传统CPU难以满足实时性要求,而GPU虽有优势,但在大规模模型训练和推理中也面临性能瓶颈。
数据管理与质量:高质量的数据是智能体发挥作用的基础,但企业往往面临数据分散、数据质量参差不齐的问题。
架构设计与生态:智能体的架构设计、软件功能和生态平台尚未标准化,企业需要投入大量资源进行探索和开发。
场景融合挑战:智能体需要与企业具体业务场景紧密结合,但找到合适的应用场景并实现技术落地并不容易。
技术人才需求
AI算法工程师:负责设计和优化智能体的算法,要求具备深度学习、机器学习等专业知识。
自然语言处理(NLP)工程师:专注于语言理解和生成,是智能体交互能力的核心。
数据科学家:负责数据管理和分析,确保数据质量,为智能体提供支持。
系统架构师:设计智能体的整体架构,确保系统的稳定性和可扩展性。
跨学科人才:既懂业务又懂AI技术的复合型人才,能够将技术与实际业务需求相结合。
人才成本
薪资水平:2024年,人工智能行业的平均月薪为13,594元,位居行业榜首。其中,AI工程师的年薪普遍较高,如深度学习工程师年薪可达150万元以上。
招聘难度与成本:AI人才供不应求,市场竞争激烈,企业面临招聘难、人才流动率高、招聘渠道有限等问题。
培养成本:由于技术更新快,企业需要持续投入资源进行人才培训和技能提升。
综上所述,企业智能体的实施面临较高的技术门槛和人才成本。企业需要在技术研发、人才培养和资源投入方面做好充分准备,才能有效推动智能体的应用和落地。
3. 场景融合与定制化难题
企业智能体的应用需要与具体的业务场景紧密结合,但不同企业的业务流程和需求差异巨大,通用型智能体难以满足这种个性化需求。例如,制造业企业的生产流程复杂且独特,通用智能体可能无法准确理解和执行这些任务。因此,企业需要投入大量时间和资源进行定制化开发,这进一步增加了实施难度和成本。
4. 技术局限与信任问题
尽管人工智能技术发展迅速,但智能体在处理复杂任务时仍存在局限性。例如,大型语言模型在高精度任务中的准确率较低,且输出结果缺乏可解释性。这使得企业在关键业务决策中对智能体的输出持谨慎态度,难以完全信任其结果。
5. 组织文化与执行力不足
企业内部对智能体的接受程度和使用习惯也会影响其应用效果。许多企业存在对新技术的抗拒心理,团队协作不畅,流程优化滞后,这些问题都会阻碍智能体的有效落地。此外,智能体的实施需要企业的高层和基层员工达成一致的认知,否则战略难以落地。
最后总结:
企业智能体在理论和部分应用场景中展现出巨大潜力,但在实际落地过程中,仍面临技术、数据、成本、信任和组织文化等多方面的挑战。这些挑战使得企业难以全面实现智能体的预期价值,甚至在某些情况下,智能体的应用效果不如预期。因此,企业在推进智能体应用时,需要充分评估自身的技术能力、数据基础和业务需求,谨慎选择适合的场景和技术方案