目录
-
- A、飞行员配对方案问题 (二分图最大匹配)(最大流)【提高+/省选- 】
- B、太空飞行计划问题(最大权闭合图转最小割、最小割方案输出)【省选/NOI- 】
- C、最小路径覆盖问题(有向无环图最小路径覆盖)(拆点)(最大流)【省选/NOI- 】
- D、魔术球问题(有向无环图的最小路径覆盖、思维)【省选/NOI- 】
- E 、圆桌问题(二分图多重匹配)(最大流)【省选/NOI- 】
- I、 方格取数问题(二分图的最大独立集/最小割)【省选/NOI- 】
- K、航空路线问题(最小费用最大流)
- Q、运输问题(最大费用最大流 + 最小费用最大流)【省选/NOI- 】
- X、骑士共存问题(最大独立集)(匈牙利 / 最大流)
最详细(也可能现在不是了)网络流建模基础 (近乎完整的全套问题建模方法)
一些前置知识
-
最大匹配数:最大匹配的匹配边的数目
-
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
-
最大独立数:选取最多的点,使任意所选两点均不相连
-
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。
-
定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)
-
定理2:最大匹配数 = 最大独立数
-
定理3:最小路径覆盖数 = 顶点数 - 最大匹配数
整理的算法模板合集: ACM模板
| 问题编号 | 问题名称 | 问题模型 | 转化模型 |
|---|---|---|---|
| A | 飞行员配对方案问题 | 二分图最大匹配 | 网络最大流 |
| B | 太空飞行计划问题 | 最大权闭合图 | 网络最小割 |
| C | 最小路径覆盖问题 | 有向无环图最小路径覆盖 | 网络最大流 |
| D | 魔术球问题 | 有向无环图最小路径覆盖 | 网络最大流 |
| E | 圆桌问题 | 二分图多重匹配 | 网络最大流 |
| F | 最长递增子序列问题 | 最多不相交路径 | 网络最大流 |
| G | 试题库问题 | 二分图多重匹配 | 网络最大流 |
| H | 机器人路径规划问题 | 未解决,假题 | 最小费用最大流 |
| I | 方格取数问题 | 二分图点权最大独立集 | 网络最小割 |
| J | 餐巾计划问题 | 线性规划网络优化 | 最小费用最大流 |
| K | 航空路线问题 | 最长不相交路径 | 最小费用最大流 |
| L | 软件补丁问题 | 最小转移代价 | 最短路径 |
| M | 星际转移问题 | 网络判定 | 网络最大流 |
| N | 孤岛营救问题 | 分层图最短路径 | 最短路径 |
| O | 汽车加油行驶问题 | 分层图最短路径 | 最短路径 |
| P | 数字梯形问题 | 最大权不相交路径 | 最小费用最大流 |
| Q | 运输问题 | 网络费用流量 | 最小费用最大流 |
| R | 分配问题 | 二分图最佳匹配 | 最小费用最大流 |
| S | 负载平衡问题 | 最小代价供求 | 最小费用最大流 |
| T | 深海机器人问题 | 线性规划网络优化 | 最小费用最大流 |
| U | 最长k可重区间集问题 | 最大权不相交路径 | 最小费用最大流 |
| V | 最长k可重线段集问题 | 最大权不相交路径 | 最小费用最大流 |
| W | 火星探险问题 | 线性规划网络优化< |

这篇博客详尽解析了24道与线性规划和网络流相关的竞赛题目,包括最大匹配、最小割、最小路径覆盖等应用场景,通过建模方法将问题转化为网络流问题,利用最大流算法求解。每道题目都提供了问题分析、建模方法和解题思路,如飞行员配对、太空飞行计划、最小路径覆盖等。
最低0.47元/天 解锁文章
2364

被折叠的 条评论
为什么被折叠?



