解题报告:线性规划与网络流24题

这篇博客详尽解析了24道与线性规划和网络流相关的竞赛题目,包括最大匹配、最小割、最小路径覆盖等应用场景,通过建模方法将问题转化为网络流问题,利用最大流算法求解。每道题目都提供了问题分析、建模方法和解题思路,如飞行员配对、太空飞行计划、最小路径覆盖等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最详细(也可能现在不是了)网络流建模基础 (近乎完整的全套问题建模方法)

xht的二分图与网络流 学习笔记

*【题解】网络流24题 24/24

*网络流24题 题解

[线性规划与网络流24题] 网络流常见模型

一些前置知识

  • 最大匹配数:最大匹配的匹配边的数目

  • 最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择

  • 最大独立数:选取最多的点,使任意所选两点均不相连

  • 最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。

  • 定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)

  • 定理2:最大匹配数 = 最大独立数

  • 定理3:最小路径覆盖数 = 顶点数 - 最大匹配数

整理的算法模板合集: ACM模板


问题编号 问题名称 问题模型 转化模型
A 飞行员配对方案问题 二分图最大匹配 网络最大流
B 太空飞行计划问题 最大权闭合图 网络最小割
C 最小路径覆盖问题 有向无环图最小路径覆盖 网络最大流
D 魔术球问题 有向无环图最小路径覆盖 网络最大流
E 圆桌问题 二分图多重匹配 网络最大流
F 最长递增子序列问题 最多不相交路径 网络最大流
G 试题库问题 二分图多重匹配 网络最大流
H 机器人路径规划问题 未解决,假题 最小费用最大流
I 方格取数问题 二分图点权最大独立集 网络最小割
J 餐巾计划问题 线性规划网络优化 最小费用最大流
K 航空路线问题 最长不相交路径 最小费用最大流
L 软件补丁问题 最小转移代价 最短路径
M 星际转移问题 网络判定 网络最大流
N 孤岛营救问题 分层图最短路径 最短路径
O 汽车加油行驶问题 分层图最短路径 最短路径
P 数字梯形问题 最大权不相交路径 最小费用最大流
Q 运输问题 网络费用流量 最小费用最大流
R 分配问题 二分图最佳匹配 最小费用最大流
S 负载平衡问题 最小代价供求 最小费用最大流
T 深海机器人问题 线性规划网络优化 最小费用最大流
U 最长k可重区间集问题 最大权不相交路径 最小费用最大流
V 最长k可重线段集问题 最大权不相交路径 最小费用最大流
W 火星探险问题 线性规划网络优化<
编号 问名称 问模型 转化模型 1 飞行员配对方案问 二分图最大匹配 网络最大流 2 太空飞行计划问 最大权闭合图 网络最小割 3 最小路径覆盖问 有向无环图最小路径覆盖 网络最大流 4 魔术球问 有向无环图最小路径覆盖 网络最大流 5 圆桌问 二分图多重匹配 网络最大流 6 最长递增子序列问 最多不相交路径 网络最大流 7 试库问 二分图多重匹配 网络最大流 8 机器人路径规划问 (未解决) 最小费用最大流 9 方格取数问 二分图点权最大独立集 网络最小割 10 餐巾计划问 线性规划网络优化 最小费用最大流 11 航空路线问 最长不相交路径 最小费用最大流 12 软件补丁问 最小转移代价 最短路径 13 星际转移问 网络判定 网络最大流 14 孤岛营救问 分层图最短路径 最短路径 15 汽车加油行驶问 分层图最短路径 最短路径 16 数字梯形问 最大权不相交路径 最小费用最大流 17 运输问 网络费用流量 最小费用最大流 18 分配问 二分图最佳匹配 最小费用最大流 19 负载平衡问 最小代价供求 最小费用最大流 20 深海机器人问 线性规划网络优化 最小费用最大流 21 最长k可重区间集问 最大权不相交路径 最小费用最大流 22 最长k可重线段集问 最大权不相交路径 最小费用最大流 23 火星探险问 线性规划网络优化 最小费用最大流 24 骑士共存问 二分图最大独立集 网络最小割
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁凡さん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值