(每日一题)P4841 [集训队作业2013]城市规划 (无向连通图计数)(普通生成函数 + 多项式求逆)

本文详细探讨了如何计算无向连通图的方案数,通过建立与一般无向图的关系,利用生成函数和多项式求逆的方法进行求解。通过解析题目并给出解题思路,展示了一种解决此类问题的模板。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整理的算法模板合集: ACM模板

点我看算法全家桶系列!!!

实际上是一个全新的精炼模板整合计划


每日一题(莫反 / 多项式 / 母函数 / 群论) 2021.4.14 生成函数 + 多项式求逆

Problem
在这里插入图片描述
Solution

题目要求的是 n n n 个点的无向连通图的方案数,直接做无从下手,我们考虑有没有什么能直接算出来的相关的方案数,再转换为无向连通图的方案数。

那么 n n n 个点的无向图的方案数可以直接求嘛?我们设 g n g_n gn 表示无向图的方案数,不一定连通,显然因为不一定连通,所以我们从这 n n n 点中任选两个点,它们之间的边的情况,都有有边,没有边,两种方案,所以显然总方案数为 2 C N   2 2^{C_N^{\ 2}} 2CN 2 种。

找到了一个可以直接计算的与题目中想要求的答案有些关联的函数,那么回到问题本身,我们设 f n f_n fn 表示有 n n n 个点的无向连通图的方案数,我们考虑它们之间的联系。

显然 g n g_n gn 是包含 f n f_n fn 的, g n g_n gn 含有更多不连通的情况,那么我们就可以选定一个点,枚举该点所在的连通块的点数 i i i,显然该连通块里的方案数为 f i f_i fi,那么剩下的点就没有要求一定连通,即方案数为 g n − i g_{n-i} gni,所以显然有:

g n = ∑ i = 1 n C n − 1   i − 1 f i g n − i g_n = \sum\limits_{i=1}^n C_{n-1}^{\ i-1}f_ig_{n-i} gn=i=1nCn1 i1figni

考虑展开组合数化简一下得:

g n ( n − 1 ) ! = ∑ i = 1 n f i ( i − 1 ) ! g n − i ( n − i ) ! \frac{g_n}{(n-1)!} = \sum\limits_{i=1}^{n}\frac{f_i}{(i-1)!}\frac{g_{n-i}}{(n-i)!} (n1)!gn=i=1n<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁凡さん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值