GraphX是Spark中的一个分布式图计算框架,是对Spark RDD的扩展。这里所说的图并不是图片,而是一个抽象的关系网。例如,社交应用微信、QQ、微博等用户之间的好友、关注等存在错综复杂的联系,这种联系构成了一张巨大的关系网,我们把这个关系网称为图。GraphX目前适用于微信、微博、社交网络、电子商务等类型的产品,也越来越多地应用于推荐领域的人群划分、年龄预测、标签推理等。
Vertices、edges、triplets是Spark GraphX中3个最重要的概念。
-
Vertices对应的RDD名称为VertexRDD,VertexRDD继承自
RDD[(VertexId, VD) ]
,RDD的类型是VertexId和VD,其中VD是属性的类型,也就是说,VertexRDD有ID和顶点属性。 -
Edges对应的是EdgeRDD,EdgeRDD继承的RDD的类型是Edge[ED],属性有3个:源顶点的ID、目标顶点的ID、边属性。
-
Triplets的属性有源顶点ID、源顶点属性、边属性、目标顶点ID、目标顶点属性,Triplets其实是对Vertices和Edges做了Join操作
一、简单使用
其实顶点和边都是RDD,通过顶点和边之间的关系构建的图其三元组关系也是一个RDD,都适用RDD的一些操作
/**
* @author: ffzs
* @Date: 2021/10/11 下午3:48
*/
object GraphX {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder
.appName("SparkGraphXExample")
.master("local[*]")
.getOrCreate()
val sc = spark.sparkContext
sc.setLogLevel("WARN")
val users:RDD[(VertexId, (String, String))] = sc.parallelize(Array(
(3L, ("zhangsan", "student")),
(2L, ("lisi", "prof")),
(5L, ("wangwu", "prof")),
(7L, ("zhaosi", "postdoc")),
))
val relationships: RDD[Edge[String]]