2026年考研数一重要公式大全集合(早上起来第一件事是什么!)

整理数一公式并归纳与本博客,大家也可以评论建言补充子结论嗷!!!祝大家一战上岸!

泰勒公式(x=0处展开)

1. 指数函数

e^x = \sum_{n=0}^{\infty}\frac{x^n}{n!}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...

2. 三角函数

\sin x =\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n+1}}{(2n+1)!}= x - \frac{x^3}{3!}+ \frac{x^5}{5!} - ...

\cos x = \sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{(2n)!}=1-\frac{x^2}{2!} + \frac{x^4}{4!} - ...

\tan x = x+\frac{x^3}{3}+\frac{2x^5}{15}

\arctan x =\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n+1}}{(2n+1)}= x - \frac{x^3}{3}+ \frac{x^5}{5} - ...

\arcsin x = x + \frac{x^3}{6}+ \frac{3x^5}{40} - ...

3. 对数函数

\ln(1+x) = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}x^{n}}{n}=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...(-1<x<1)

4. 有理函数

\frac{1}{1-x} = \sum_{n=0}^{\infty}x^n=1+x+x^2+x^3+...(-1<x<1)

\frac{1}{1+x} =\sum_{n=0}^{\infty}(-1)^nx^n= 1-x+x^2-x^3+...(-1<x<1)

5. 幂函数

(1+x)^a = \sum_{n=0}^{\infty}\binom{a}{n}x^n=1+ax +\frac{a(a-1)}{2!}x^2+...

其中\binom{a}{n} = \frac{a(a-1)(a-2)...(a-n+1)}{n!}

重要积分公式

对称性

\int_{a}^{b} f(x)dx =\int_{a}^{b}f(a+b-x)dx

平均值公式

\int_{a}^{b} f(x)dx =\frac{1}{2}\int_{a}^{b}[f(a+b-x) + f(x)]dx

点火公式

\int_{0}^{\frac{\pi}{x}}\sin^nxdx=\int_{0}^{\frac{\pi}{x}}\cos^nx dx= \begin{cases} \frac{n-1}{n}\frac{n-3}{n-2}...\frac{1}{2}\cdot \frac{\pi}{2} & \text{ if } n= 2k\\ \frac{n-1}{n}\frac{n-3}{n-2}...\frac{2}{3} & \text{ if } n = 2k-1 \end{cases}

\int_{0}^{\pi}\sin^nxdx=2\int_{0}^{\frac{\pi}{2}}\sin^nxdx=2\int_{0}^{\frac{\pi}{2}}\cos^nxdx

\int_{0}^{\pi}\cos^nxdx=\begin{cases} 0 & \text{ if } n=2k-1 \\ 2\int_{0}^{\frac{\pi}{2}}\sin^nxdx=2\int_{0}^{\frac{\pi}{2}}\cos^nxdx & \text{ if } n=2k \end{cases}

\int_{0}^{2\pi}\sin^nx dx= \int_{0}^{2\pi}\cos^nxdx=\begin{cases} 0 & \text{ if } n=2k-1 \\ 4\int_{0}^{\frac{\pi}{2}}\sin^nxdx=4\int_{0}^{\frac{\pi}{2}}\cos^nxdx & \text{ if } n=2k \end{cases}

\int_{0}^{\pi}xf(\sin x) dx= \frac{\pi}{2}\int_{0}^{\pi}f(\sin x)dx=\pi\int_{0}^{\frac{\pi}{2}}f(\sin x)dx=\pi\int_{0}^{\frac{\pi}{2}}f(\sin x)dx

对称交换

\int_{0}^{\frac{\pi}{2}}f(\sin x,\cos x)dx = \int_{0}^{\frac{\pi}{2}}f(\cos x,\sin x)dx

奇偶函数

\int_{-a}^{a}f(x)dx = \int_{0}^{a}f(x)+f(-x)dx 

注:偶倍奇零

基本积分公式

  • \int \frac{1}{x}dx=\ln|x|+C
  • \int \tan xdx=-\ln |\cos x|+C
  • \int \cot xdx=\ln|\sin x|+C
  • \int \sec xdx=\ln|secx+tanx|+C
  • \int cscxdx=\ln|\csc x-\cot x|+C
  • \int \sec^2xdx=\tan x+C
  • \int \csc^2 xdx=-\cot x+C
  • \int \sec x\cdot \tan xdx=\sec x+C
  • \int \csc x \cdot \cot x dx=-\csc x +C
  • \int \frac{1}{a^2+x^2}= \frac{1}{a}\arctan\frac{x}{a}+C
  • \int \frac{1}{\sqrt{a^2-x^2}}= \arcsin\frac{x}{a}+C
  • \int \frac{1}{\sqrt{a^2+x^2}}=\ln(x+\sqrt{a^2+x^2})+C
  • \int \sqrt{a^2-x^2}= \frac{\pi}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin\frac{x}{a}+C

旋转体体积

  • 绕x轴\textbf{V}=\pi\int_{a}^{b}f^2(x)dx
  • 绕y轴\textbf{V}=2\pi\int_{a}^{b}x|f(x)|dx或者使用逆函数求解

曲率公式

平面曲线 y=f(x) 的曲率:

k= \frac{|{y}''|}{(1+({y}')^2)^{\frac{3}{2}}}

数列公式

等比数列

  • 通项:a_n=a_1q^{n-1}
  • 前n项和:S_n=a_1\frac{1-q^n}{1-q}(q\neq 1)

等差数列

  • 通项:a_n=a_1+(n-1)d
  • 前n项和:S_n=\frac{(a_1+a_n)n}{2}

通项为nS_n=\frac{n(n+1)}{2}

通项为n²S_n=\frac{n(n+1)(2n+1)}{6}

通项为\frac{1}{n(n+1)}S_n=1-\frac{1}{n+1}

常用不等式

三角不等式

|a \pm b|\leq |a|+|b|

逆三角不等式

||a| - |b||\leq |a-b|

算术-几何均值

\sqrt{ab}\leq \frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}

扩展均值不等式

\sqrt[3]{abc}\leq \frac{a+b+c}{3}\leq \sqrt{\frac{a^2+b^2+c^2}{3}}

单增性

\sin x< x< \tan x(0 < x < \pi/2)

指数下界

e^x\geq x+1(x \in \mathbb{R})

对数不等式

\frac{1}{1+x}< \ln(1+\frac{1}{x})< \frac{1}{x}(x>0)

\frac{x}{1+x}< \ln(1+x)< x(x>0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千天夜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值