A2A和MCP(一)-- 智能体协议标准战争?

🌈 嗨,我是青松,很高兴遇到你!

🌟 希望用我的经验,让每个人的AI学习之路走的更容易些~

🔥 专栏:大模型(LLMs)高频面题全面整理(★2025最新版★)| 动手学大模型开发


目录

为什么AI协议成为了竞争焦点

什么是A2A

A2A的工作原理:多智能体系统的协议

Anthropic的MCP是什么

MCP的工作原理:上下文驱动的智能体-工具之间的通信协议

A2A和MCP聚焦的不同场景吗

A2A会挑战MCP吗

为什么要开发A2A

A2A还是MCP?简单性将是制胜关键

AI协议和智能体的未来


当地时间2025年4月9日,谷歌在Google Cloud Next 2025大会上推出A2A协议(Agent2Agent,智能体对智能体) —— 一种用于智能体之间通信的全新开放协议。

众所周知,现在很火的MCP协议,同样也是用于智能体的一项技术。相似的用途,不同的AI大厂力推,这让业内人员不禁猜测,A2A是否就此开启了与MCP的协议之争。

为什么AI协议成为了竞争焦点

AI正朝着由工具和智能体组成的生态系统发展,这些工具和智能体能够进行推理、分配任务并展开协作。随着这一趋势的发展,对标准化协议的需求也在迅速增长。

A2A在发布时宣称:“标准协议对于实现智能体的互操作性至关重要,尤其是在将智能体与外部系统连接方面。”

A2A表示构建AI智能体系统需要两个层面的支持:

  • 工具和数据集成:为智能体/LLM(大语言模型)访问外部资源和工具提供标准方式。

  • 智能体间通信:一种用于规范智能体之间交互方式的标准途径。

MCP主要聚焦于第一类,即组织智能体、工具或用户输入到模型中的内容(关于mcp详情可参考本人的另一篇文章)。

而A2A则专注于第二类,即智能体之间的协调。另一方面,通过将工具与智能体分离,谷歌将A2A定位为MCP的补充协议,而非竞争对手。我们稍后会详细探讨这一点。

A2A协议不仅仅定义了系统之间的通信方式,它们还决定了谁来构建什么、哪些工具能够蓬勃发展,以及生态系统的连接速度。

什么是A2A

根据相关文档和发布声明,A2A正如其名称的字面含义:它对AI智能体之间的通信方式进行了标准化。

按照官方的说法,A2A使智能体能够:

  • 直接相互通信。

  • 安全地交换信息。

  • 跨工具、服务和企业系统协调行动。

A2A的工作原理:多智能体系统的协议

A2A定义了智能体如何以一致且结构化的方式发现彼此并进行通信。智能体通过HTTP公开一张公共卡片,使自己能够被发现。这张卡片包含:

  • 托管/域名系统(DNS)信息:智能体的访问地址。

  • 版本:当前使用的智能体版本。

  • 功能:智能体能够执行的功能的结构化列表。

A2A根据任务时长和交互性支持多种客户端 - 服务器通信方法:

  • 轮询式请求/响应:标准的HTTP模型,适用于客户端需要检查任务状态和结果的情况。

  • 服务器发送事件(SSE):用于短期运行的任务。

  • 推送通知:用于长期运行的任务,任务完成后可通知客户端。

A2A客户端智能体A负责发起任务请求,远程智能体B负责处理请求。智能体可以使用JSON格式的智能体卡片来宣传自己的能力。客户端与远程智能体之间的通信围绕任务展开。任务对象由A2A定义。智能体通过发送消息来传达上下文、响应、工件和用户指令。

Anthropic的MCP是什么

MCP(模型上下文协议)是由Anthropic开发的开放标准,用于规范应用程序向LLM和AI助手提供上下文的方式。它实现了模型与外部的工具和数据系统之间的安全双向连接。

MCP通过提供与外部的工具和数据源(如数据库、应用程序API、商业工具、存储库、开发环境等)集成的标准,助力在大语言模型之上构建智能体和工作流程。通过将大语言模型与外部数据系统连接,智能体在复杂的AI工作流程中能够给出更智能、有上下文感知的响应。

MCP的工作原理:上下文驱动的智能体-工具之间的通信协议

MCP采用客户端 - 服务器模型,主机应用程序可以连接到多个服务器:

  • MCP主机:像Claude Desktop、集成开发环境(IDE,vscode/jetbrain系列),或AI工具这类通过MCP访问数据的程序。

  • MCP服务器:这些程序通过MCP暴露特定功能。外部工具或数据源,如文件系统、开发工具、商业工具等,实现MCP协议,使大语言模型能够安全地与之连接。

  • MCP客户端:连接到MCP服务器的应用程序。一个典型的MCP客户端示例是由大语言模型驱动的聊天机器人。

  • 本地数据源:MCP可以访问的计算机文件、数据库和服务。

  • 远程服务:通过互联网提供的外部系统,通常通过API访问,MCP服务器可以与之交互。

MCP服务器公开APIs和endpoints,允许MCP客户端连接并交换信息。自推出以来,MCP做为事实上的大语言模型访问外部工具的生态系统标准,受到了业界越来越多的支持。

A2A和MCP聚焦的不同场景吗

A2A推出时定位为MCP的补充协议,并解释了它们如何解决多智能体生态系统中的不同问题。A2A的发布声明提到:“A2A是一种开放协议,是对Anthropic的MCP的补充,MCP为智能体提供有用的工具和上下文。”

在A2A文档中,有一个名为“A2A love MCP”的页面,官方通过一个汽车维修店的用例,展示了A2A和MCP如何协同工作:

  • MCP是将这些智能体与其结构化工具(例如“将平台升高2米”“将扳手向右转动4毫米” )连接起来的协议。

  • A2A是让终端用户或其他智能体,与汽车维修店员工进行沟通(比如“我的汽车发出嘎嘎声” )的协议。A2A支持持续的来回沟通,并制定不断演变的计划以达成目标(例如“给我发一张左轮的照片”“我注意到有液体泄漏。这种情况持续多久了?” )。A2A还帮助汽车维修店员工与其他智能体(如零件供应商)协同工作。

从表面上看,这种定位似乎合乎逻辑。然而,A2A的整个论点是基于智能体和工具之间的明确区分。然而这真的是不同场景吗,还是说智能体间通信和智能工具编排之间的差异其实并没有那么明显?

A2A会挑战MCP吗

构建多智能体系统真的需要同时使用MCP和A2A吗?尽管A2A定位为MCP的补充协议,但不少业内人士质疑,在实际应用中,A2A和MCP可能会产生冲突。

因为智能体和工具之间的界限往往并不清晰。工具正逐渐演变成更类似智能体的系统,反之,智能体也越来越依赖工具来高效运行。

尽管这两种协议在理论上都可能在AI生态系统中占有一席之地,但未来将取决于它们的实际应用情况。

A2A在发布时,展示了使用它的众多合作伙伴(公司),以显示对该生态系统的支持,但Anthropic和OpenAI都不在其中。

为什么要开发A2A

根据发布的声明,开发A2A的原因是: 为了充分发挥智能体的优势,这些智能体能够横跨孤立的数据系统和应用程序,在动态的多智能体生态系统中进行协作。即使智能体由不同的供应商构建或基于不同的框架,实现它们之间的互操作性将提高自主性,大幅提升生产力,同时降低长期成本。

通过A2A协议,谷歌在进行一场押注:AI的未来将由可互操作的多智能体系统驱动。

而且A2A出现的时机比较微妙。不久之前,OpenAI宣布支持MCP。随后,就在A2A发布的第二天,谷歌也计划在Gemini模型和SDK中支持MCP。

如今,这两个协议都已经受众广泛。通过推出A2A并公开支持MCP,谷歌看上去是两边都在进行下注,既支持社区认可的标准,又推行自己对智能体协作方式的愿景。

A2A能否得到社区和技术生态系统的全面采用,只能时间来决定。

A2A还是MCP?简单性将是制胜关键

在计算机领域,技术路线之争太常见了,历史上演过多次。

在web服务兴起的早期,XML和SOAP等技术是标准。这些格式非常复杂,为企业级系统提供了强大的功能,但使用起来也很繁琐。

最终在这一领域胜出的是JSON。尽管JSON比较简单,功能也没那么丰富,但它成为了网络数据交换的主流格式。开源社区推动了JSON的应用,使其比SOAP或XML更易于实现。JSON的简单性使其成为更具吸引力的选择,即便它没有那些更复杂的同类格式功能那么强大。

从历史上多次的技术竞争中,可以学到一个重要的经验:简单性和易用性才是最终赢家。

AI协议和智能体的未来

Anthropic将如何回应A2A呢?相信时间会给出答案。

MCP在2025年已经开始获得蓬勃发展,鉴于MCP背后的社区推动力量以及它在社区中的广泛采用,A2A要取代它看上去是一个不太可能的任务,当前趋势看上去更像是两者共存,相辅相成。

本质上来说,AI协议的真正竞争在于应用。最终胜出的协议(或协议组合),将是那些能够拓展应用场景、获得工具支持并得到生态系统认可的协议。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值