数据结构 图 Floyd算法

本文深入解析Floyd算法,通过逐步迭代找到所有顶点对之间的最短路径。文章以从2到9的路径为例,展示了如何通过不同的中转点更新路径矩阵,最终得到最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全部每周作业和视频思考题答案和解析 见 浙江大学 数据结构 思考题+每周练习答案汇总

Floyd算法感觉视频讲的也不是非常通俗易懂。

这里我还是进行一下分析。我们先把最外面的一层循环去掉,令k=0,得到如下式子:

for( i = 0; i < N; i++ ) 
for( j = 0; j < N; j++ ) 
if( D[i][0] + D[0][j] < D[i][j] ) {
    D[i][j] = D[i][0] + D[0][j]; 
    path[i][j] = 0;
} 

这样循环以后意味着什么呢?意味着,我们找到了经过0点的路径中最短的路径

然后再令k=1,得到:

for( i = 0; i < N; i++ ) 
for( j = 0; j < N; j++ ) 
if( D[i][1] + D[1][j] < D[i][j] ) {
    D[i][j] = D[i][1] + D[1][j]; 
    path[i][j] = 1;
} 

这样,就得到了经过点0和/或1点中最短的路径。

注意我们把k 从 0 遍历完一遍以后,得到的结果就是可以经过任意中转后路径最小的点。

再详细一点:假设我们要找从2到9的最小路径

首先 k=0的时候得到两个更小的路径:D[2][0]+D[0][9] 

然后 k=1的时候发现更小的路径:D[2][1]+D[1][0] 则从2到9的路径就变为了D[2][1]+D[1][0]+D[0][9]

……中间步骤没有发现更小的相关路径

在 k = 7的时候发现更小的路径 D[0][7]+D[7][9] ,则从2到9的路径就变为了D[2][1]+D[1][0]+D[0][7]+D[7][9]

在k = 8的时候发现更小的路径 D[2][8]+D[8][9],则从2到9的最短路径变为 D[2][8]+D[8][9]

我们根据假设来做个图:

根据这个图把循环执行一遍就彻底明白了。

所以最终程序是:

for( k = 0; k < N; k++ )
    for( i = 0; i < N; i++ ) 
        for( j = 0; j < N; j++ ) 
            if( D[i][k] + D[k][j] < D[i][j] ) {
                D[i][j] = D[i][k] + D[k][j]; 
                path[i][j] = k;
            } 

然后我们的路径记录在path里,初始化的时候都设为-1。如果path[i][j] = k;且此时i=k或者i=j,即从i到j的最短路径就是直接从i到j,而不用经过任何跳转。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dezeming

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值