文章目录
一、什么是抽象层次一致性(SLAP)
抽象层次一致性(Single Level of Abstration Principle,SLAP)
,是和组合函数密切相关的一个原则。组合函数要求将一个大函数拆成多个子函数的组合,而SLAP要求函数体中的内容必须在同一个抽象层次上。
如果高层次抽象和底层细节杂糅在一起,就会显得凌乱,难以理解。
定义与来源:SLAP是ThoughtWorks的总监级咨询师Neal Ford在《卓有成效的程序员》一书中提出来的概念,其思想源自Kent Beck提出的组合方法模式(Composed Method Pattern,CMP)。该原则强调每个方法中的所有代码都应处于同一级抽象层次。
原理阐释:抽象层次与概念的内涵相关,内涵越小,抽象的特征越少,抽象的层次就越高,外延也越大,反之亦然。例如,“动物”比“狗”的抽象层次高,“狗”又比“哈士奇”的抽象层次高。SLAP要求在一个方法或模块中,不能同时包含高抽象层次的操作和底层细节操作。如果高层次抽象和底层细节杂糅在一起,会使代码凌乱,难以理解,增加系统的复杂性。
应用方法:在实际应用中,通常需要将业务处理的主要步骤放在公有函数中,以展示高抽象层次的逻辑,而将具体的实现细节封装在私有方法中。这样可以确保一个函数中的抽象处于同一水平,符合SLAP原则,构筑起代码结构的金字塔。
重要意义:遵循SLAP原则有助于减少混乱和降低理解成本,使代码更易于维护和扩展。它能让开发者更清晰地理解代码逻辑,也有助于团队成员之间的沟通,因为大家可以在同一抽象层次上交流代码功能和业务逻辑。
在分层架构中的体现:分层架构中也应遵循SLAP原则,保证同一层的组件处于同一个抽象层次。例如,经典三层架构中,上层关注用户的体验和交互,中层关注应用和业务逻辑,下层关注外部资源和设备,每一层都有其特定的抽象焦点,层内组件应保持抽象层次一致,以避免层间关系混乱。
二、违反SLAP原则的代码与重构
重构违反SLAP(抽象层次一致性)原则的代码,核心思路是将不同抽象层次的代码分离到各自的方法或类中,确保每个单元只处理同一层次的逻辑。以下是具体的重构方法和示例:
1、重构核心步骤
- 识别抽象层次:区分代码中的"做什么"(高层业务逻辑)和"怎么做"(底层实现细节)。
- 提取低层次细节:将底层操作(如IO、计算、SQL)抽离为独立的私有方法。
- 保留高层逻辑:让原方法只保留业务流程或策略选择等高层逻辑,通过调用提取的方法完成具体操作。
- 检查层次一致性:确保每个方法内的代码都处于同一抽象层次,避免跨层次混合。
示例1:重构混合业务与IO的代码
原问题代码(同一方法混合业务规则与文件操作):
public class OrderProcessor {
// 违反SLAP:同一方法中混合多个抽象层次
public void processOrder(Order order) {
// 高抽象层次:业务规则判断
if (!order.isValid()) {
throw new InvalidOrderException("Order is invalid");
}
// 中抽象层次:流程步骤
order.calculateTotal();
// 低抽象层次:文件操作细节
try (FileWriter writer = new FileWriter("orders.txt", true);
BufferedWriter bw = new BufferedWriter(writer)) {
// 底层字符串拼接
String orderLine = order.getId() + "," +
order.getTotal() + "," +
new SimpleDateFormat("yyyy-MM-dd").format(new Date());
bw.write(orderLine);
bw.newLine();
} catch (IOException e) {
e.printStackTrace();
}
// 高抽象层次:业务操作
notifyCustomer(order);
}
private void notifyCustomer(Order order) {
// 实现省略
}
}
重构后代码(分离层次):
public class OrderProcessor {
// 仅保留高层业务流程(同一抽象层次)
public void processOrder(Order order) {
validateOrder(order); // 高层:验证订单
calculateOrderTotal(order); // 高层:计算总价
saveOrderToFile(order); // 高层:保存订单(调用底层方法)
notifyCustomer(order); // 高层:通知客户
}
// 提取:订单验证(单一职责)
private void validateOrder(Order order) {
if (!order.isValid()) {
throw new InvalidOrderException("Order is invalid");
}
}
// 提取:计算总价(单一职责)
private void calculateOrderTotal(Order order) {
order.calculateTotal();
}
// 提取:文件保存细节(底层实现,独立层次)
private void saveOrderToFile(Order order) {
try (FileWriter writer = new FileWriter("orders.txt", true);
BufferedWriter bw = new BufferedWriter(writer)) {
String orderLine = buildOrderLine(order); // 进一步拆分字符串拼接
bw.write(orderLine);
bw.newLine();
} catch (IOException e) {
e.printStackTrace();
}
}
// 再提取:字符串拼接(更低层细节)
private String buildOrderLine(Order order) {
return order.getId() + "," +
order.getTotal() + "," +
new SimpleDateFormat("yyyy-MM-dd").format(new Date());
}
private void notifyCustomer(Order order) {
// 实现省略
}
}
改进点:
- 原方法仅保留业务流程的"骨架",每个步骤通过方法调用实现。
- 文件IO、字符串拼接等底层细节被抽离到独立方法,与高层业务逻辑分离。
示例2:重构混合策略与算法的代码
原问题代码(策略选择与具体计算混合):
public Statistics analyzeData(List<DataPoint> data, AnalysisType type) {
// 高抽象:策略选择
if (type == AnalysisType.BASIC) {
// 低抽象:具体计算(问题点)
double sum = 0;
int count = 0;
for (DataPoint point : data) {
if (point.getValue() != null) {
sum += point.getValue();
count++;
}
}
double average = sum / count;
return new Statistics(average, 0);
} else if (type == AnalysisType.ADVANCED) {
// 另一个低抽象计算(问题点)
// ... 具体实现 ...
}
// ...
}
重构后代码(分离策略与实现):
public class DataAnalyzer {
// 仅保留高层策略选择(同一抽象层次)
public Statistics analyzeData(List<DataPoint> data, AnalysisType type) {
switch (type) {
case BASIC:
return calculateBasicStatistics(data); // 调用基础计算
case ADVANCED:
return calculateAdvancedStatistics(data); // 调用高级计算
default:
throw new IllegalArgumentException("Unknown analysis type");
}
}
// 提取:基础统计计算(底层实现)
private Statistics calculateBasicStatistics(List<DataPoint> data) {
double sum = 0;
int count = 0;
for (DataPoint point : data) {
if (point.getValue() != null) {
sum += point.getValue();
count++;
}
}
double average = sum / count;
return new Statistics(average, 0);
}
// 提取:高级统计计算(底层实现)
private Statistics calculateAdvancedStatistics(List<DataPoint> data) {
double sum = 0;
double sumOfSquares = 0;
int count = 0;
for (DataPoint point : data) {
if (point.getValue() != null) {
sum += point.getValue();
sumOfSquares += point.getValue() * point.getValue();
count++;
}
}
double average = sum / count;
double variance = (sumOfSquares / count) - (average * average);
return new Statistics(average, variance);
}
}
改进点:
- 原方法仅负责"选择策略"(高层逻辑),具体计算逻辑被抽离到独立方法。
- 每个计算方法只处理单一层次的细节(纯算法实现),与策略选择分离。
2、重构后的优势
- 可读性提升:开发者可先通过高层方法理解业务流程,再按需深入底层细节。
- 可维护性增强:修改底层实现(如更换文件格式、优化算法)时,无需改动高层逻辑。
- 复用性提高:抽离的底层方法可在其他场景复用(如
buildOrderLine
可用于日志打印)。 - 测试便捷:底层方法可单独编写单元测试,无需依赖完整业务流程。
3、关键原则总结
- 单一层次:每个方法只说"同一层级的话",避免在业务流程中穿插具体实现。
- 逐步下沉:通过多次提取方法,将细节"下沉"到更低层次,形成清晰的调用链。
- 命名辅助:方法名应体现其抽象层次(如
processOrder
是高层,buildOrderLine
是底层)。
通过这种方式,代码会形成类似"金字塔"的结构:顶层是业务流程,中层是步骤分解,底层是具体实现,每层职责明确且层次清晰。
三、实际开发中符合SLAP原则
以下是几个实际项目中遵循抽象层次层次一致性原则(SLAP)的代码示例,展示不同场景下如何保持单一抽象层次:
简单示例
抽象层次一致性(Single Level of Abstration Principle,SLAP),是和组合函数密切相关的一个原则。组合函数要求将一个大函数拆成多个子函数的组合,而SLAP要求函数体中的内容必须在同一个抽象层次上。如果高层次抽象和底层细节杂糅在一起,就会显得凌乱,难以理解。
function 高级(){ //1级目录
中级1();
中级2();
}
function 中级1(){ //2级目录-1
低级1();
低级2();
}
function 低级1(){ //正文内容
//处理
}
function 低级2(){ //正文内容
//处理
}
function 中级2(){ //2级目录-2
低级3();
}
function 低级3(){ //正文内容
//处理
}
比如,泡咖啡这个例子,将业务逻辑封装在子方法里面,而不是将部分业务逻辑放在主流程中:
public void makeCoffee(boolean isMilkCoffee, boolean isSweetTooth, CoffeeType type) {
//选择咖啡粉
pourCoffeePowder(type);
//加入沸水
pourWater();
//选择口味
flavor(isMilkCoffee, isSweetTooth);
//搅拌
stir();
}
private void flavor(boolean isMilkCoffee, boolean isSweetTooth) {
if (isMilkCoffee) {
pourMilk();
}
if (isSweetTooth) {
addSugar();
}
}
private void pourCoffeePowder(CoffeeType type) {
if (type == CAPPUCCINO) {
pourCappuccinoPowder();
}
else if (type == BLACK) {
pourBlackPowder();
}
else if (type == MOCHA) {
pourMochaPowder();
}
else if (type == LATTE) {
pourLattePowder();
}
else if (type == ESPRESSO) {
pourEspressoPowder();
}
}
示例1:电商订单处理服务(分层清晰的业务流程)
// 高层:订单服务(仅处理业务流程协调)
@Service
public class OrderService {
private final OrderValidator orderValidator;
private final InventoryManager inventoryManager;
private final PaymentProcessor paymentProcessor;
private final OrderRepository orderRepository;
private final NotificationService notificationService;
// 构造函数注入依赖(省略)
// 仅包含高层业务流程,所有步骤通过方法调用完成
public OrderResult processNewOrder(OrderRequest request) {
// 1. 验证订单合法性(高层步骤)
Order order = orderValidator.validateAndConvert(request);
// 2. 检查库存(高层步骤)
inventoryManager.checkAndReserveInventory(order);
// 3. 处理支付(高层步骤)
PaymentResult paymentResult = paymentProcessor.processPayment(order);
if (!paymentResult.isSuccessful()) {
return OrderResult.failed("Payment failed: " + paymentResult.getErrorMessage());
}
// 4. 保存订单(高层步骤)
Order savedOrder = orderRepository.save(order);
// 5. 发送通知(高层步骤)
notificationService.sendOrderConfirmation(savedOrder);
return OrderResult.success(savedOrder);
}
}
// 中层:库存管理(专注于库存领域逻辑)
@Service
public class InventoryManager {
private final InventoryRepository inventoryRepo;
private final InventoryReservationService reservationService;
// 仅处理库存相关的中层逻辑
public void checkAndReserveInventory(Order order) {
for (OrderItem item : order.getItems()) {
checkItemAvailability(item);
reserveItemQuantity(item);
}
}
private void checkItemAvailability(OrderItem item) {
// 检查库存是否充足的细节(中层实现)
if (inventoryRepo.getAvailableQuantity(item.getProductId()) < item.getQuantity()) {
throw new InsufficientInventoryException(item.getProductId());
}
}
private void reserveItemQuantity(OrderItem item) {
// 库存预留的细节(中层实现)
reservationService.createReservation(
item.getProductId(),
item.getQuantity(),
order.getId()
);
}
}
// 底层:数据库操作(仅处理SQL细节)
@Repository
public class JpaOrderRepository implements OrderRepository {
private final EntityManager entityManager;
@Override
public Order save(Order order) {
// 仅包含JPA操作细节(底层实现)
if (order.getId() == null) {
entityManager.persist(order);
return order;
} else {
return entityManager.merge(order);
}
}
}
符合SLAP的特点:
OrderService
只负责业务流程的"是什么"(步骤协调),不包含任何实现细节InventoryManager
专注于库存领域的中层逻辑,不涉及数据库或HTTP等底层技术- 数据访问层只处理SQL/JPA细节,不包含业务规则
示例2:API接口层(控制器与服务的层次分离)
// 高层:API控制器(仅处理HTTP层逻辑)
@RestController
@RequestMapping("/api/users")
public class UserController {
private final UserService userService;
private final UserResponseMapper responseMapper;
// 仅处理HTTP请求/响应相关逻辑(参数绑定、状态码、异常转换)
@PostMapping
public ResponseEntity<UserResponse> createUser(@Valid @RequestBody UserRequest request) {
User user = userService.createUser(request);
UserResponse response = responseMapper.toResponse(user);
return ResponseEntity.status(HttpStatus.CREATED).body(response);
}
@ExceptionHandler(EmailAlreadyExistsException.class)
public ResponseEntity<ErrorResponse> handleDuplicateEmail(EmailAlreadyExistsException e) {
ErrorResponse error = new ErrorResponse("DUPLICATE_EMAIL", e.getMessage());
return ResponseEntity.status(HttpStatus.CONFLICT).body(error);
}
}
// 中层:用户服务(处理领域逻辑)
@Service
public class UserService {
private final UserRepository userRepo;
private final PasswordEncoder passwordEncoder;
// 仅处理用户领域的核心逻辑(不涉及HTTP或数据库细节)
public User createUser(UserRequest request) {
validateEmailUniqueness(request.getEmail());
User user = new User();
user.setEmail(request.getEmail());
user.setName(request.getName());
user.setPasswordHash(encodePassword(request.getPassword()));
user.setCreatedAt(LocalDateTime.now());
return userRepo.save(user);
}
private void validateEmailUniqueness(String email) {
if (userRepo.existsByEmail(email)) {
throw new EmailAlreadyExistsException(email);
}
}
private String encodePassword(String rawPassword) {
return passwordEncoder.encode(rawPassword);
}
}
符合SLAP的特点:
- 控制器只处理HTTP协议相关逻辑(参数验证、响应封装、异常映射)
- 服务层专注于领域规则(邮箱唯一性校验、密码加密)
- 层次间通过简单对象(User、UserRequest)通信,避免跨层次依赖
示例3:工具类设计(单一层次的功能封装)
// 高层:文件处理工具(协调步骤)
public class DocumentProcessor {
private final TextExtractor textExtractor;
private final TextCleaner textCleaner;
private final KeywordAnalyzer keywordAnalyzer;
// 仅定义文档处理的流程步骤
public AnalysisResult analyzeDocument(File documentFile) {
String rawText = textExtractor.extractFromFile(documentFile);
String cleanedText = textCleaner.clean(rawText);
return keywordAnalyzer.analyze(cleanedText);
}
}
// 中层:文本提取器(专注于文本提取逻辑)
public class TextExtractor {
private final PdfExtractor pdfExtractor;
private final DocExtractor docExtractor;
// 仅处理文本提取的中层逻辑(判断文件类型、选择提取器)
public String extractFromFile(File file) {
String extension = getFileExtension(file);
if ("pdf".equals(extension)) {
return pdfExtractor.extractText(file);
} else if ("doc".equals(extension) || "docx".equals(extension)) {
return docExtractor.extractText(file);
} else {
throw new UnsupportedFileException("Unsupported file type: " + extension);
}
}
private String getFileExtension(File file) {
// 提取文件扩展名的细节
String name = file.getName();
int lastDotIndex = name.lastIndexOf('.');
return lastDotIndex == -1 ? "" : name.substring(lastDotIndex + 1).toLowerCase();
}
}
// 底层:PDF提取实现(仅处理PDF解析细节)
public class PdfExtractor {
// 仅包含PDF解析的底层技术细节
public String extractText(File pdfFile) {
try (PDDocument document = PDDocument.load(pdfFile)) {
PDFTextStripper stripper = new PDFTextStripper();
return stripper.getText(document);
} catch (IOException e) {
throw new DocumentProcessingException("Failed to extract PDF text", e);
}
}
}
符合SLAP的特点:
DocumentProcessor
只定义"分析文档"的流程,不涉及具体文件格式TextExtractor
专注于"如何选择提取策略",不包含PDF/Word的具体解析代码PdfExtractor
仅处理PDF解析的底层技术细节(使用PDF库API)
这些示例的共同设计特点
- 层次分明:每个类/方法只处理同一抽象层次的逻辑,形成"高层指挥-中层协调-底层执行"的结构
- 命名自解释:方法名反映其抽象层次(如
analyzeDocument
是高层,extractText
是中层) - 依赖注入:通过构造函数注入不同层次的组件,避免在高层代码中直接创建底层对象
- 逐步深入:理解代码时可从高层方法开始,按需深入到更低层次的实现细节
遵循SLAP原则的代码读起来像"故事叙述"——先了解整体流程,再深入具体细节,大大降低了理解成本。
示例4:Spring源码
在Spring中,做上下文初始化的核心类AbstractApplicationContext的refresh()函数为我们在遵循SLAP方面做了一个很好的示范。
@Override
public void refresh() throws BeansException, IllegalStateException {
synchronized (this.startupShutdownMonitor) {
// Prepare this context for refreshing.
prepareRefresh();
// Tell the subclass to refresh the internal bean factory.
ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory();
// Prepare the bean factory for use in this context.
prepareBeanFactory(beanFactory);
try {
// Allows post-processing of the bean factory in context subclasses.
postProcessBeanFactory(beanFactory);
// Invoke factory processors registered as beans in the context.
invokeBeanFactoryPostProcessors(beanFactory);
// Register bean processors that intercept bean creation.
registerBeanPostProcessors(beanFactory);
// Initialize message source for this context.
initMessageSource();
// Initialize event multicaster for this context.
initApplicationEventMulticaster();
// Initialize other special beans in specific context subclasses.
onRefresh();
// Check for listener beans and register them.
registerListeners();
// Instantiate all remaining (non-lazy-init) singletons.
finishBeanFactoryInitialization(beanFactory);
// Last step: publish corresponding event.
finishRefresh();
}
catch (BeansException ex) {
if (logger.isWarnEnabled()) {
logger.warn("Exception encountered during context initialization - " +
"cancelling refresh attempt: " + ex);
}
// Destroy already created singletons to avoid dangling resources.
destroyBeans();
// Reset 'active' flag.
cancelRefresh(ex);
// Propagate exception to caller.
throw ex;
}
finally {
// Reset common introspection caches in Spring's core, since we
// might not ever need metadata for singleton beans anymore...
resetCommonCaches();
}
}
}
试想,如果上面的代码逻辑不是这样写,而是平铺在refresh()函数中,结果会是怎样?