B. AND 0, Sum Big

time limit per test

2 seconds

memory limit per test

256 megabytes

Baby Badawy's first words were "AND 0 SUM BIG", so he decided to solve the following problem. Given two integers n and k, count the number of arrays of length n such that:

  • all its elements are integers between 0 and 2k−1 (inclusive);
  • the bitwise AND of all its elements is 0;
  • the sum of its elements is as large as possible.

Since the answer can be very large, print its remainder when divided by 109+7.

Input

The first line contains an integer t (1≤t≤10) — the number of test cases you need to solve.

Each test case consists of a line containing two integers n and k (1≤n≤105, 1≤k≤20).

Output

For each test case, print the number of arrays satisfying the conditions. Since the answer can be very large, print its remainder when divided by 109+7.

Example

Input

Copy

2
2 2
100000 20

Output

Copy

4
226732710

Note

In the first example, the 4 arrays are:

  • [3,0],
  • [0,3],
  • [1,2],
  • [2,1].

解题说明:此题是一道数学题,找规律能发现答案是n的k次方。

#include <stdio.h>

long long t, ts, n, k, ks, o;
const long long mod = 1000000007;

int main()
{
	scanf("%lld", &t);
	for (ts = 0; ts < t; ts++) 
	{
		scanf("%lld %lld", &n, &k);
		o = 1;
		for (ks = 0; ks < k; ks++) 
		{
			o = (o * n) % mod;
		}
		printf("%lld\n", o);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值