1327 合并果子

 描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入

输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目

多组数据

输出

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

样例输入
3 
1 2 9
样例输出
15

 

贪心问题,先排序

#include <iostream>
#include <queue>
using namespace std;

typedef struct node
{
    int data;
    
    friend bool operator <(node a , node b)
    {
        
        return a.data > b.data;
        
    }
    
}Point;

int main()
{
    
    priority_queue<node> Q;
    
    int n , sum;
	
    Point v , a , b , x;
    
    while (scanf ("%d" , &n) != EOF)
    {
		sum = 0;
        
		while (n --)
		{
			scanf ("%d" , &v.data);
			
			Q.push(v);
		}
		
		while (!Q.empty())
		{
			
            a = Q.top();
			
            Q.pop();
			
            b = Q.top();
			
            Q.pop();
			
            x.data = a.data + b.data;
			
            sum += x.data;
			
            if (!Q.empty())
				
				Q.push(x);
			
		}
		
		printf ("%d\n" , sum);
		
		while (!Q.empty())
		{
			Q.pop();
		}
		
    }
	
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值