A. Shortest path of the king

本文提供了一种方法来计算国际象棋国王从当前位置移动到指定目标位置所需的最少步骤数,考虑了八个可能的移动方向,包括上下左右及对角线,并通过实例演示了解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

time limit per test
1 second
memory limit per test
64 megabytes
input
standard input
output
standard output

The king is left alone on the chessboard. In spite of this loneliness, he doesn't lose heart, because he has business of national importance. For example, he has to pay an official visit to square t. As the king is not in habit of wasting his time, he wants to get from his current position s to square t in the least number of moves. Help him to do this.

In one move the king can get to the square that has a common side or a common vertex with the square the king is currently in (generally there are 8 different squares he can move to).

Input

The first line contains the chessboard coordinates of square s, the second line — of square t.

Chessboard coordinates consist of two characters, the first one is a lowercase Latin letter (from a to h), the second one is a digit from 1to 8.

Output

In the first line print n — minimum number of the king's moves. Then in n lines print the moves themselves. Each move is described with one of the 8: LRUDLULDRU or RD.

LRUD stand respectively for moves left, right, up and down (according to the picture), and 2-letter combinations stand for diagonal moves. If the answer is not unique, print any of them.

Sample test(s)
input
a8
h1
output
7
RD
RD
RD
RD
RD
RD
RD

解题说明:这道题是求从棋盘一个位置到另一个位置的最短距离,可以按照上下左右对角线八个方向进行移动。首先应该把棋盘字母坐标转换为数字判断横纵坐标差值各是多少,由于一步棋可以同时改变横纵坐标,所以移动距离至少为这两个坐标中的最大值。在移动时以坐标相等为终止条件,否则就通过不断比较横纵坐标的大小进行方向判断。

#include<iostream>
#include<map>
#include<string>
#include<algorithm>
using namespace std;

int main()
{
	string s1, s2;
	cin >> s1 >> s2;
	cout << max(abs(int(s1[0]-s2[0])), abs(int(s1[1]-s2[1]))) << endl;
	while (s1 != s2) 
	{
		if (s1[0] < s2[0]) 
		{
			s1[0]++;
			cout << "R";
		}
		else if (s1[0] > s2[0])
		{
			s1[0]--;
			cout << "L";
		}
		if (s1[1] > s2[1]) 
		{
			s1[1]--;
			cout << "D"; 
		}
		else if (s1[1] < s2[1]) 
		{
			s1[1]++;
			cout << "U";
		}
		cout << endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值