推荐一款嵌入式C的开源代码框架-tboox / tbox

推荐理由

这是一款大神级开源代码,基于c语言的,几乎包含了嵌入式开发的各个部分的封装,可以说是嵌入式系统的瑞士军刀!
注:该开源代码作者不是我,我这只是推荐,帮作者宣传。
欢迎关注:fensnote,了解更多有价值内容

在这里插入图片描述

简介

TBOX是一个用c语言实现的跨平台开发库。

针对各个平台,封装了统一的接口,简化了各类开发过程中常用操作,使你在开发过程中,更加关注实际应用的开发,而不是把时间浪费在琐碎的接口兼容性上面,并且充分利用了各个平台独有的一些特性进行优化。

这个项目的目的,是为了使C开发更加的简单高效。

目前支持的平台有: Windows, Macosx, Linux, Android, iOS, *BSD等等。

通过xmake支持各种编译模式:

  • Release: 正式版编译,禁用调试信息、断言,各种检测机制,启用编译器优化
  • Debug: 调试模式,默认启用详细调试信息、断言、内存越界检测、内存泄漏、锁竞争分析等检测机制
  • Small: 最小化编译,默认禁用所有扩展模块,启用编译器最小化优化
  • Micro: 针对嵌入式平台,仅仅编译tbox微内核,仅提供最基础的跨平台接口,生成库仅64K左右(内置轻量libc接口实现)

如果你想了解更多,请参考:在线文档, Github以及Gitee

特性

流库

针对http、file、socket、data等流数据,实现统一接口进行读写,并且支持: 阻塞、非阻塞、异步 三种读写模式。
支持中间增加多层filter流进行流过滤,实现边读取,内部边进行解压、编码转换、加密等操作,极大的减少了内存使用。

主要提供以下模块:

  • stream:通用非阻塞流,用于一般的单独io处理,同时支持协程以实现异步传输。
  • transfer:流传输器,维护两路流的传输。
  • static_stream:针对静态数据buffer优化的静态流,用于轻量快速的数据解析。
协程库
  • 快速高效的协程切换支持
  • 提供跨平台支持,核心切换算法参考boost,并且对其进行重写和优化,目前支持架构:x86, x86_64, arm, arm64, mips32
  • 提供channel协程间数据通信支持,基于生产、消费者模型
  • 提供信号量、协程锁支持
  • socket、stream都模块原生支持协程,并且可在线程和协程间进行无缝切换
  • 提供http、file等基于协程的简单服务器实例,只需几百行代码,就可以从socket开始写个高性能io服务器,代码逻辑比异步回调模式更加清晰
  • 同时提供stackfull, stackless两种协程模式支持,stackless协程更加的轻量(每个协程只占用几十个bytes),切换更快(会牺牲部分易用性)
  • 支持epoll, kqueue, poll, select 和 IOCP
  • 在协程和poller中支持同时等待和调度socket,pipe io和process
数据库
  • 统一并简化数据库操作接口,适配各种数据源,通过统一的url来自动连接打开支持的数据库,数据的枚举采用迭代器模型。
  • 目前支持sqlite3以及mysql两种关系型数据库,也可自定义扩展使用其他关系型数据库。
xml库
  • 针对xml提供DOM和SAX两种解析模式,SAX方式采用外部迭代模式,灵活性和性能更高,并且可以选择指定路径,进行解析。
  • 解析过程完全基于stream,所以是高度流化的,可以实现边下载、边解压、边转码、边解析一条龙服务,使用较低的内存也可以解析大规模数据。
  • 提供xml writer以支持对xml生成
内存库
  • 参考linux内核内存管理机制的实现,并对其进行各种改造和优化,所实现的TBOX独有的一整套内存池管理架构。
  • 调试模式下,可以轻松检测并定位内存泄露、内存越界溢出、内存重叠覆盖等常见内存问题,并对整体内存的使用进行了统计和简要分析。
  • 针对大块数据、小块数据、字符串数据进行了充分的利用,避免了大量外部碎片和内部碎片的产生。分配操作进行了各种优化,96%的情况下,效率都是在O(1)。
容器库
  • 提供哈希、链表、数组、队列、堆栈、最小最大堆等常用容器。
  • 支持各种常用成员类型,在原有的容器期初上,其成员类型还可以完全自定义扩展。
  • 所有容器都支持迭代器操作。
  • 大部分容器都可以支持基于stream的序列化和反序列化操作。
算法库
  • 提供各种排序算法:冒泡排序、堆排序、快速排序、插入排序。
  • 提供各种查找算法:线性遍历、二分法搜索。
  • 提供各种遍历、删除、统计算法。
  • 以迭代器为接口,实现算法和容器的分离,类似stl,但是c实现的,更加轻量。
网络库
  • 实现http客户端模块
  • 实现cookies
  • 实现dns解析与缓存
  • 实现ssl(支持openssl, polarssl, mbedtls)
  • 支持ipv4、ipv6
  • 支持通过协程实现异步模式
数学运算库
  • 提供各种精度的定点运算支持
  • 提供随机数生成器
libc库
  • libc的一个轻量级实现,完全跨平台,并且针对不同架构进行了优化。
  • 支持大部分字符串、宽字符串操作。
  • 扩展字符串、宽字符串的各种大小写不敏感操作接口
  • 扩展memset_u16memset_u32等接口,并对其进行高度优化,尤其适合图形渲染程序
libm库
  • libm部分接口的一个轻量级实现,以及对常用系统接口的封装。(目前只实现了部分,之后有时间会完全实现掉)
  • 扩展部分常用接口,增加对sqrt、log2等常用函数的整数版本计算,进行高度优化,不涉及浮点运算,适合嵌入式环境使用。
object库
  • 轻量级类apple的CoreFoundation库,支持object、dictionary、array、string、number、date、data等常用对象,并且可以方便扩展自定义对象的序列化。
  • 支持对xml、json、binary以及apple的plist(xplist/bplist)格式序列化和反序列化。
    并且实现自有的binary序列化格式, 针对明文进行了简单的加密,在不影响性能的前提下,序列化后的大小比bplist节省30%。
平台库
  • 提供file、directory、socket、thread、time等常用系统接口
  • 提供atomic、atomic64接口
  • 提供高精度、低精度定时器
  • 提供高性能的线程池操作
  • 提供event、mutex、semaphore、spinlock等事件、互斥、信号量、自旋锁操作
  • 提供获取函数堆栈信息的接口,方便调试和错误定位
  • 提供跨平台动态库加载接口(如果系统支持的话)
  • 提供io轮询器,针对epoll, poll, select, kqueue进行跨平台封装
  • 提供跨平台上下文切换接口,主要用于协程实现,切换效率非常高
压缩库
  • 支持zlib/zlibraw/gzip的压缩与解压(需要第三方zlib库支持)。
字符编码库
  • 支持utf8、utf16、gbk、gb2312、uc2、uc4 之间的互相转码,并且支持大小端格式。
实用工具库
  • 实现base64/32编解码
  • 实现crc32、adler32、md5、sha1等常用hash算法
  • 实现日志输出、断言等辅助调试工具
  • 实现url编解码
  • 实现位操作相关接口,支持各种数据格式的解析,可以对8bits、16bits、32bits、64bits、float、double以及任意bits的字段进行解析操作,并且同时支持大端、小端和本地端模式,并针对部分操作进行了优化,像static_stream、stream都有相关接口对其进行了封装,方便在流上进行快速数据解析。
  • 实现swap16、swap32、swap64等位交换操作,并针对各个平台进行了优化。
  • 实现一些高级的位处理接口,例如:位0的快速统计、前导0和前导1的快速位计数、后导01的快速位计数
  • 实现单例模块,可以对静态对象、实例对象进行快速的单例封装,实现全局线程安全
  • 实现option模块,对命令行参数进行解析,提供快速方便的命令行选项建立和解析操作,对于写终端程序还是很有帮助的
正则表达式库
  • 支持匹配和替换操作
  • 支持全局、多行、大小写不敏感等模式
  • 使用pcre, pcre2和posix正则库

一些使用tbox的项目:

使用 Xmake 编译

请先安装: xmake

# 默认直接编译当前主机平台
$ cd ./tbox
$ xmake

# 编译mingw平台
$ cd ./tbox
$ xmake f -p mingw --sdk=/home/mingwsdk
$ xmake

# 编译iphoneos平台
$ cd ./tbox
$ xmake f -p iphoneos
$ xmake

# 编译android平台
$ cd ./tbox
$ xmake f -p android --ndk=xxxxx
$ xmake

# 交叉编译
$ cd ./tbox
$ xmake f -p linux --sdk=/home/sdk #--bin=/home/sdk/bin
$ xmake

使用 xmake.sh 编译

$ ./configure
$ make

例子

#include "tbox/tbox.h"

int main(int argc, char** argv) {
    if (!tb_init(tb_null, tb_null)) return 0;

    tb_vector_ref_t vector = tb_vector_init(0, tb_element_str(tb_true));
    if (vector) {
        tb_vector_insert_tail(vector, "hello");
        tb_vector_insert_tail(vector, "tbox");

        tb_for_all (tb_char_t const*, cstr, vector) {
            tb_trace_i("%s", cstr);
        }
        tb_vector_exit(vector);
    }
    tb_exit();
    return 0;
}

技术支持

你可以考虑赞助我们也获取技术支持服务,[成为赞助商]

联系方式

<think>好的,我现在需要解决用户在YoloV7训练时遇到的AttributeError: 'list' object has no attribute 'shape'的错误。首先,我应该回忆一下这个错误的常见原因。根据用户提供的引用信息,比如引用[1]和[2],这个错误通常是因为尝试对列表对象使用shape属性,而列表本身并没有这个属性。shape通常是NumPy数组或Pandas DataFrame的属性。 接下来,我需要考虑在YoloV7训练代码中哪些地方可能会返回列表而不是NumPy数组或张量。例如,数据加载部分可能存在问题。用户可能在处理数据时,错误地将数组转换为列表,或者在数据预处理步骤中没有正确转换数据类型。此外,检查模型输入输出的形状是否正确也很重要,因为如果传递给模型的数据是列表形式,就会触发这个错误。 然后,我应该根据引用中的解决方法,建议用户检查数据加载和预处理的代码,确保所有输入数据都是NumPy数组或张量。例如,在数据增强或数据加载器部分,可能使用了某些函数返回列表而不是数组。用户需要找到这些地方,并使用np.array()将列表转换为数组,或者检查是否有误用列表的情况。 另外,还需要确认是否在代码中错误地访问了shape属性。例如,用户可能在打印或调试时,对某个变量调用了.shape,但该变量实际上是一个列表。这时候需要更改变量的类型或调整代码逻辑。 可能还需要检查YoloV7的特定代码实现,查看是否有版本差异或API变更导致某些函数返回类型改变。例如,某些数据加载函数可能在更新后返回列表而非张量,这时候需要查阅官方文档或社区讨论来确认正确的使用方法。 最后,建议用户添加调试语句,如打印变量的类型和形状,帮助定位具体出错的代码行。同时,确保所有依赖库的版本兼容,避免因版本不一致引发的问题。如果用户还是无法解决,可以建议他们提供更多代码片段或错误堆栈信息,以便进一步分析。</think>### YoloV7训练时出现AttributeError: 'list' object has no attribute 'shape'的解决方法 #### 问题分析 该错误发生在尝试对列表对象调用`shape`属性时。在Python中,列表(`list`)原生不支持`shape`属性,而`shape`通常是NumPy数组或张量(如PyTorch/TensorFlow)的属性[^1][^2]。在YoloV7训练代码中,常见原因包括: 1. 数据加载器返回的数据格式错误 2. 预处理函数未正确转换数据类型 3. 模型输入输出处理不当 --- #### 逐步解决方案 1. **检查数据加载流程** - 确认数据增强操作返回的是张量而非列表 - 检查`DataLoader`的`collate_fn`函数是否正确处理批数据 ```python # 错误示例:返回列表 def collate_fn(batch): return [item for item in batch] # 正确示例:转换为张量(PyTorch) def collate_fn(batch): images, targets = zip(*batch) return torch.stack(images), targets ``` 2. **验证数据预处理输出** - 确保图像转换后为张量格式 ```python from torchvision import transforms transform = transforms.Compose([ transforms.ToTensor() # 关键:将PIL图像转为张量 ]) ``` 3. **调试具体报错位置** - 在错误堆栈中找到触发异常的代码- 添加类型检查语句: ```python print(type(your_variable)) # 确认是否为列表 print(dir(your_variable)) # 查看可用属性 ``` 4. **强制类型转换(应急方案)** ```python if isinstance(your_variable, list): your_variable = np.array(your_variable) # 转为NumPy数组 # 或对于PyTorch your_variable = torch.tensor(your_variable) ``` --- #### 典型修复案例 在YoloV7的数据加载模块中,若出现以下代码: ```python # 错误代码 bboxes = [x1, y1, x2, y2] # 创建列表 print(bboxes.shape) # 触发错误 ``` 应修改为: ```python # 正确代码 import numpy as np bboxes = np.array([x1, y1, x2, y2]) # 转为NumPy数组 print(bboxes.shape) # 正常工作 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fensnote

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值