多源汇最短路
Floyd 算法
Floyd算法思想
设D[k,i,j]为“途经若干个编号不超过k的节点”,从i到j的最短路
长度。
则:
D[k,i,j] = min( D[k-1,i,j] , D[k-1,i,k] + D[k-1,k,j] )
void Floyd()
{
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(dis[i][j]>(dis[i][k]+dis[k][j]))
{
dis[i][j]=dis[i][k]+dis[k][j];
path[i][j]=k;
}
}
输出路径
// Floyd算法输出路径
// 初始化pre[i][j]= j;
int u = st;//st是起点,end是终点
while(u != pre[u][end])
{
cout << u << endl;
u = pre[u][end];
}
cout << u << endl;
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible。
数据保证图中不存在负权回路。
输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。
输出格式
共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible。
数据范围
1≤n≤200,
1≤k≤n2 1≤m≤20000,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
代码样例
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<stack>
#include<queue>
#include<sstream>
#include<map>
#define x first
#define y second
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 210;
const int MOD = 1000000007;
const int INF = 0x3f3f3f3f;
int gcd(int a, int b){return b ? gcd(b, a % b) : a;}
int lowbit(int x) {return x & -x;}
int n, m, k;
int g[N][N];
void floyd()
{
for(int k = 1; k <= n; k ++ ){
for(int i = 1; i <= n; i ++ ){
for(int j = 1; j <= n; j ++ ){
g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
}
}
}
}
int main()
{
cin >> n >> m >> k;
for(int i = 1; i <= n; i ++ ){
for(int j = 1; j <= n; j ++ ){
if(i == j) g[i][j] = 0;
else g[i][j] = 0x3f3f3f3f;
}
}
for(int i = 0; i < m; i ++ ){
int x, y, z;
cin >> x >> y >> z;
g[x][y] = min(g[x][y], z);
}
floyd();
for(int i = 0; i < k; i ++ ){
int x, y;
cin >> x >> y;
if(g[x][y] > 0x3f3f3f3f / 2) cout << "impossible" << endl;
else cout << g[x][y] << endl;
}
return 0;
}