【深度学习|PyTorch】基于 PyTorch 搭建 U-Net 深度学习语义分割模型——附代码及其解释!

【深度学习|PyTorch】基于 PyTorch 搭建 U-Net 深度学习语义分割模型——附代码及其解释!

【深度学习|PyTorch】基于 PyTorch 搭建 U-Net 深度学习语义分割模型——附代码及其解释!

论文地址: https://arxiv.org/abs/1505.04597
代码地址:https://github.com/jakeret/tf_unet



1.数据准备

语义分割任务的输入通常是图像以及对应的像素级标签(即每个像素的分类)。我们首先需要加载和预处理数据。

import torch
from torch.utils.data import DataLoader, Dataset
import torchvision.transforms as transforms
from PIL import Image
import os

class SegmentationDataset(Dataset):
    def __init__(self, image_dir, mask_dir, transform=None):
        self.image_dir = image_dir
        self.mask_dir = mask_dir
        self.transform = transform
        self.images = os.listdir(image_dir)

    def __len__(self):
        return len(self.images)

    def __getitem__(self, index):
        img_path = os.path.join(self.image_dir, self.images[index])
        mask_path = os.path.join(self.mask_dir, self.images[index])
        image = Image.open(img_path).convert("RGB")
        mask = Image.open(mask_path).convert("L")  # Assuming masks are grayscale

        if self.transform is not None:
            image = self.transform(image)
            mask = self.transform(mask)

        return image, mask

# 数据加载及预处理
image_dir = "path_to_images"
mask_dir = "path_to_masks"

transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor(),
])

dataset = SegmentationDataset
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值