子数组的最大累加和问题——NC.19

本文介绍了一种求解子数组最大累加和的方法,通过动态规划的方式实现了时间复杂度为O(n)、空间复杂度为O(1)的算法。提供两种实现思路:一种使用结果数组记录每一步的最大值;另一种采用简化版写法,直接更新最大累加和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个数组arr,返回子数组的最大累加和 例如,arr = [1, -2, 3, 5, -2, 6, -1],
所有子数组中,[3, 5, -2, 6]可以累加出最大的和12,所以返回12.
题目保证没有全为负数的数据 [要求] 时间复杂度为O(n),空间复杂度为O(1)

题解:

设一个结果数组res[arr.length]:表示到当前下标元素时,最大累加和。其计算过程为:对于当前元素,如果res[i-1]+arr[i]>=arr[i], 则res[i] = res[i-1]+arr[i];否则 res[i] = arr[i]; 最后,在从res中寻找最大数即可

import java.util.*;


public class Solution {
    /**
     * max sum of the subarray
     * @param arr int整型一维数组 the array
     * @return int整型
     */
    public int maxsumofSubarray (int[] arr) {
        // write code here
        if (arr.length <= 1) {
            return arr[0];
        }
        int[] res = new int[arr.length];
        res[0] = arr[0];
        for (int i = 1; i < arr.length; i++) {
            int tmp = res[i - 1] + arr[i];
            if (tmp >= arr[i]) {
                res[i] = tmp;
            } else {
                res[i] = arr[i];
            }
        }
        int max = -1;
        for (int i = 0; i < res.length; i++) {
            max = Math.max(max, res[i]);
        }
        return max;
    }
}

另一种简单写法:
设置一个cur用来存储累加结果,每次累加都存储最大值到max,然后如果cur<0则cur=0,相当于遇到累加和为负数时,从零开始累加。

 public int maxsumofSubarray (int[] arr) {
        if(arr == null || arr.length == 0) return -1;
        
        int max = Integer.MIN_VALUE;
        int cur = 0;
        for(int i = 0; i < arr.length; i++){
            cur += arr[i];
            max = Math.max(cur, max);
            cur = cur < 0 ? 0 : cur;
        }
        return max;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值