题目描述
给定一个数组arr,返回子数组的最大累加和 例如,arr = [1, -2, 3, 5, -2, 6, -1],
所有子数组中,[3, 5, -2, 6]可以累加出最大的和12,所以返回12.
题目保证没有全为负数的数据 [要求] 时间复杂度为O(n),空间复杂度为O(1)
题解:
设一个结果数组res[arr.length]:表示到当前下标元素时,最大累加和。其计算过程为:对于当前元素,如果res[i-1]+arr[i]>=arr[i], 则res[i] = res[i-1]+arr[i];否则 res[i] = arr[i]; 最后,在从res中寻找最大数即可
import java.util.*;
public class Solution {
/**
* max sum of the subarray
* @param arr int整型一维数组 the array
* @return int整型
*/
public int maxsumofSubarray (int[] arr) {
// write code here
if (arr.length <= 1) {
return arr[0];
}
int[] res = new int[arr.length];
res[0] = arr[0];
for (int i = 1; i < arr.length; i++) {
int tmp = res[i - 1] + arr[i];
if (tmp >= arr[i]) {
res[i] = tmp;
} else {
res[i] = arr[i];
}
}
int max = -1;
for (int i = 0; i < res.length; i++) {
max = Math.max(max, res[i]);
}
return max;
}
}
另一种简单写法:
设置一个cur用来存储累加结果,每次累加都存储最大值到max,然后如果cur<0则cur=0,相当于遇到累加和为负数时,从零开始累加。
public int maxsumofSubarray (int[] arr) {
if(arr == null || arr.length == 0) return -1;
int max = Integer.MIN_VALUE;
int cur = 0;
for(int i = 0; i < arr.length; i++){
cur += arr[i];
max = Math.max(cur, max);
cur = cur < 0 ? 0 : cur;
}
return max;
}