numpy pad

本文详细介绍了numpy库中的pad函数,用于在数组的边缘填充指定宽度的数据。通过示例展示了1D、2D和3D数组的填充过程,包括不同维度和方向上的填充长度设置,以及使用'constant'模式填充默认值。该函数在数据预处理和图像处理中具有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ndarray = numpy.pad(array, pad_width, mode, **kwargs)

  • array为要填补的数组
  • pad_width是在各维度的各个方向上想要填补的长度,如((1,2),(2,2)),表示在第一个维度上前面padding=1,后面padding=2,在第二个维度上前面padding=2,后面padding=2。如果直接输入一个整数,则说明各个维度和各个方向所填补的长度都一样。
  •  mode为填补类型,即怎样去填补,有“constant”,“edge”等模式,如果为constant模式,就得指定填补的值,如果不指定,则默认填充0。

1D

t1D = np.array([1, 1, 1])

print("1D before: \n", t1D)

t1D = np.pad(t1D, (1, 2),'constant')

print("1D after: \n", t1D)

1D before: 
 [1 1 1]
1D after:
 [0 1 1 1 0 0]

2D 

t2D = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])

print("2D before: \n", t2D)

t2D = np.pad(t2D, ((1, 2), (3, 4)),'constant')

print("2D after: \n", t2D)

2D before:
 [[1 1 1]
 [1 1 1]
 [1 1 1]]

2D after:
 [[0 0 0 0 0 0 0 0 0 0]
 [0 0 0 1 1 1 0 0 0 0]
 [0 0 0 1 1 1 0 0 0 0]
 [0 0 0 1 1 1 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0]]

3D 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值