1. 并发的定义
并发(Concurrency)指的是系统在同一时间段内处理多个任务的能力。并发关注的是任务之间的交替执行,任务之间可能并不真正同时运行,而是通过任务的分时调度机制,使得多个任务在时间上交错进行,从而给用户一种“同时”执行的感觉。
1.1 并发的特点
- 任务交替执行:在并发系统中,多个任务可能在同一个处理器上交替执行。例如,在单核处理器上,操作系统通过时间片轮转(time-slicing)快速切换任务,使多个任务看起来像是同时运行。
- 共享资源:并发任务通常需要共享系统资源(如内存、文件、网络连接等)。因此,并发编程需要处理资源共享问题,避免竞态条件、死锁等问题的发生。
- 非同时性:并发强调的是多个任务能够在一段时间内“进展”,而非“同时”运行。任务之间的执行顺序可能会交错。
1.2 并发的应用场景
- 多线程应用:在一个应用程序中使用多个线程来同时处理多个任务,如处理用户输入、网络请求、数据处理等。
- 异步编程:在异步编程模型中,任务不需要等待前一个任务完成即可开始执行,通过回调、Future、Promise等机制来处理任务的完成。
- 服务器处理多个请求:一个Web服务器可以同时处理多个用户请求,每个请求可能在不同的线程中执行。
1.3 并发的示例
public class ConcurrencyExample {
public static void main(String[] args) {
Thread thread1 = new Thread(() -> {
for (int i = 0; i < 5; i++) {
System.out.println("Thread 1: " + i);
}
});
Thread thread2 = new Thread(() -> {
for (int i = 0; i < 5; i++) {
System.out.println("Thread 2: " + i);
}
});
thread1.start();
thread2.start();
}
}
在这个示例中,thread1
和 thread2
代表两个并发任务,它们在程序中交替执行。由于任务调度的不确定性,两个线程的输出顺序可能会交替出现。
2. 并行的定义
并行(Parallelism)指的是系统同时执行多个任务的能力。并行是指在多个处理器或多核处理器上,真正同时地运行多个任务。并行化的目标是提高程序的执行效率,特别是在需要处理大量数据或计算密集型任务时,并行化可以显著减少任务的完成时间。
2.1 并行的特点
- 任务同时执行:在并行系统中,多个任务确实是同时运行的,每个任务分配给不同的处理器或处理器核。例如,在多核处理器上,多个线程或进程可以在不同的核上同时执行。
- 无共享或减少共享:并行编程通常会尝试减少任务之间的资源共享,以避免数据争用,提高执行效率。
- 同一时间内的多个计算:并行关注的是多个任务在同一时间点的真正同时执行。
2.2 并行的应用场景
- 大规模数据处理:在数据密集型任务(如数据分析、机器学习训练等)中,通过将数据分片并行处理,可以显著加快计算速度。
- 图形处理:现代图形处理单元(GPU)利用并行计算同时处理大量的像素和图形任务,以提高渲染性能。
- 科学计算:在科学研究中,大量的计算任务可以通过并行化加速,例如天气预报模拟、分子动力学仿真等。
2.3 并行的示例
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
public class ParallelExample extends RecursiveTask<Integer> {
private final int[] numbers;
private final int start;
private final int end;
public ParallelExample(int[] numbers, int start, int end) {
this.numbers = numbers;
this.start = start;
this.end = end;
}
@Override
protected Integer compute() {
if (end - start <= 2) {
return numbers[start] + numbers[end - 1];
} else {
int mid = (start + end) / 2;
ParallelExample leftTask = new ParallelExample(numbers, start, mid);
ParallelExample rightTask = new ParallelExample(numbers, mid, end);
leftTask.fork();
return rightTask.compute() + leftTask.join();
}
}
public static void main(String[] args) {
int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8};
ForkJoinPool pool = new ForkJoinPool();
ParallelExample task = new ParallelExample(numbers, 0, numbers.length);
int result = pool.invoke(task);
System.out.println("Sum: " + result);
}
}
在这个示例中,ForkJoinPool
通过分治法将任务拆分为子任务,并行执行它们。这种方式充分利用了多核处理器的能力,真正实现了任务的并行化。
3. 并发与并行的区别
3.1 概念上的区别
- 并发关注的是多个任务在时间上的交替执行,即多个任务可以在同一时间段内进展,但不一定同时执行。并发的核心在于任务调度,通过快速切换任务使得系统能够处理多个任务。
- 并行则是多个任务在物理上的同时执行,即多个任务在同一时间点同时运行。并行的核心在于硬件资源的利用,通过多核或多处理器系统,实现多个任务的并行处理。
3.2 实现方式上的区别
- 并发主要通过时间片轮转、多线程、多进程等机制来实现。在单核处理器上,并发是通过任务的快速切换来实现的,即使是在多核处理器上,并发也不一定意味着真正的并行执行。
- 并行主要依赖于多处理器、多核处理器、分布式系统等硬件支持,确保多个任务可以在同一时刻在不同的处理器或核上同时执行。
3.3 应用场景上的区别
- 并发适用于需要同时处理多个任务的场景,例如服务器处理多个客户端请求、用户界面与后台任务的同时运行等。并发编程更关注任务之间的交互、协调与资源共享。
- 并行适用于需要加速单个任务的场景,例如计算密集型任务、数据处理、图像渲染等。并行编程更关注任务的分割、并行执行与结果合并。
3.4 典型的场景对比
- 并发:一个Web服务器同时处理多个请求,每个请求由一个独立的线程处理。尽管这些线程可能在不同时间点上获得CPU时间片,但它们在宏观上是“同时”处理请求的。
- 并行:在一个多核处理器上,某个复杂计算任务被分解成多个独立的子任务,每个子任务分配到不同的处理器核上同时执行,从而加速任务完成。
4. 并发与并行的联系
尽管并发和并行是两个不同的概念,但它们之间存在一定的联系和交集:
- 并发可以在多核处理器上实现并行:一个并发程序,如果运行在多核处理器上,系统可以将不同的并发任务分配给不同的处理器核,从而实现并行。
- 并行编程通常需要考虑并发问题:即使任务在物理上是并行执行的,但任务之间可能仍然需要通信、同步、资源共享,因此并行编程中往往也需要考虑并发的相关问题,如线程安全、死锁等。
5. 并发和并行的优缺点
5.1 并发的优缺点
优点:
- 更好地利用系统资源,特别是在I/O密集型任务中,可以隐藏I/O延迟。
- 提高程序的响应性,特别是用户界面应用程序,能够同时处理用户输入和后台任务。
缺点:
- 增加了代码的复杂性
,容易引入竞态条件、死锁等问题。
- 调试和测试更加困难,因为并发问题往往依赖于特定的执行顺序,难以重现。
5.2 并行的优缺点
优点:
- 能够显著提高计算密集型任务的执行速度,通过并行化缩短任务完成时间。
- 更好地利用多核处理器和分布式系统的硬件能力。
缺点:
- 需要分解任务并行化,有些任务无法有效并行化(如依赖性强的任务)。
- 并行化可能带来额外的开销,如任务分割、结果合并、线程管理等。
6. 总结
并发和并行是两个在现代计算中至关重要的概念。并发强调在时间上的任务交替执行,使得多个任务可以在同一时间段内进展,主要用于提高系统的响应性和资源利用率。并行则强调在物理上的任务同时执行,通过利用多核处理器或分布式系统来加速计算密集型任务的执行。
在实际开发中,开发者需要根据具体的应用场景选择合适的并发或并行技术。在多任务处理、用户界面交互、I/O密集型应用中,并发技术尤为重要;而在需要高性能计算、数据处理、图形渲染的场景下,并行技术可以带来显著的性能提升。