MATLAB符号运算(七)

该实验旨在掌握MATLAB中的符号运算,包括创建符号表达式、求解代数问题、计算级数、极限、复合函数、偏导数以及解方程组。例如,使用syms命令定义符号变量,计算表达式在特定点的值,求解级数和极限,以及解微分方程组。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、实验目的:

2、实验内容:


1、实验目的:

1)掌握定义符号对象和创建符号表达式的方法;

2)掌握符号运算基本命令和规则;

3)掌握符号表达式的运算法则以及符号矩阵运算;

4)掌握符号微积分和符号方程求解的基本方法。

2、实验内容:

2-1)、分别用sym和syms创建符号表达式: 

 

syms x ;
f1 = cos(x)+sqrt((1-sin(x)^2))
syms y t;
f2 = y / exp(-2*t)

输出结果 

2-2)、求表达式?在x=1.723处的,精度为20位的代数值。

syms x y;
x = 1.723;
y = (3*x^3 + x^2 - 1) / (x^2 + 1);
vpa(subs(y, x, 1.723), 20) %求x=1.723处值,精度为20位

2-3)、求下列级数之和(提示:利用symsum(s,v,n,m)函数实现)

syms x n;
s1 = n*x^n
symsum(s1, n, 1, inf)
syms x;
s2 = x^2
symsum(s2, x, 1, 100)

第二小问可以用for循环验证答案

% 用for循环验证
sum = 0;
for j = (1:100)
        sum = sum + j^2;
end
sum %验证结果正确

 两次输出结果都=338350,没问题~

2-4)、计算下列极限值:

syms x y;
fx = (exp(x) - exp(y)) / (x - y);
lim1 = limit(fx, x, y)

clear
syms x;
fx = tan(x)^(tan(2*x));  %输入表达式
lim2 = limit(fx, x, pi/4, 'right') %趋近于π/4(+),求极限

2-5)、求复合函数;

clear
syms u v x;
y = sqrt(1+u^2);
u = log(v);
v = exp(-x);
temp = compose(u,v);    %暂时变量
y = compose(y,temp)     %复合函数结果

 

2-6)、

syms x y;
z = x^9 + 7*y^4-x^5*y^3
diff(z, 'x', 2) %对z符号表达式的x变量 求二阶导数
diff(z, 'y', 2) %y的二阶偏导数
diff(diff(z, 'x', 1),'y',1) % xy的偏导数

2-7)、求方程组的解。

clear
syms x y z;
a = [2*x-y+3*z == 5, 3*x+y-5*z == 5, 4*x-y+z == 1];
b= [x y z];
S = solve(a, b)

2-8)、分别计算下列表达式

syms x;
y1 = x^4/(1+x^2);
i1 = int(y1)         %不定积分
y2 = 3*x^2-x+1;
i2 = int(y2, 2, 0)   %对y2积分,上限2,下限0

2-9)、求解当y(0)=2,z(0)=7时,微分方程组的解

syms x y z;
[y,z]=dsolve('Dy-z=sin(x)','Dz+y=1+x','y(0)=2','z(0)=7','x')

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北国无红豆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值