背景意义
研究背景与意义
随着城市化进程的加快,城市道路的使用频率显著增加,随之而来的道路安全问题也愈发突出。道路障碍物,如施工围挡、围栏、障碍物和坑洼,不仅影响交通流畅性,还可能对行车安全造成严重威胁。因此,开发一种高效、准确的道路障碍物检测系统显得尤为重要。基于深度学习的目标检测技术,尤其是YOLO(You Only Look Once)系列模型,因其实时性和高准确率,成为解决这一问题的理想选择。
本研究旨在基于改进的YOLOv11模型,构建一个专门针对道路障碍物的检测系统。我们将利用RFEX-COCO数据集,该数据集包含1400幅图像,涵盖了四类主要的道路障碍物:施工、围栏、障碍物和坑洼。这些类别的选择不仅反映了现实道路环境中的常见问题,也为模型的训练提供了丰富的样本。通过对这些障碍物的准确检测,可以有效提升交通管理的智能化水平,减少交通事故的发生。
此外,随着计算机视觉技术的不断进步,结合深度学习的道路障碍物检测系统将为智能交通系统的建设提供强有力的支持。该系统不仅可以实时监测道路状况,还能够为交通管理部门提供数据支持,帮助其进行科学决策和规划。通过对道路障碍物的自动检测与识别,我们能够实现对城市交通环境的动态监控,提升道路安全性和通行效率。
综上所述,基于改进YOLOv11的道路障碍物检测系统的研究,不仅具有重要的理论意义,也具备广泛的应用前景。它将为智能交通系统的发展提供新的思路和技术支持,推动城市交通管理的智能化进程。
图片效果
数据集信息
本项目数据集信息介绍
本项目所使用的数据集名为“RFEX-COCO”,旨在为改进YOLOv11的道路障碍物检测系统提供高质量的训练数据。该数据集专注于城市道路环境中的障碍物检测,涵盖了四个主要类别,分别是“construction”(施工)、“fence”(围栏)、“obstruction”(障碍物)和“pothole”(坑洼)。这些类别的选择反映了城市交通中常见的障碍物类型,能够有效提升模型在实际应用中的识别能力。
数据集中包含大量标注精确的图像,确保了每个类别的样本数量足够丰富,能够满足深度学习模型的训练需求。施工区域的图像展示了不同类型的施工标志和设备,围栏类别则包括各种样式的围栏结构,这些元素在城市道路中经常出现。障碍物类别涵盖了多种可能影响交通流畅性的物体,如掉落的物品或其他临时性障碍,而坑洼类别则专注于道路表面的损坏情况,这些都是驾驶安全的重要考量因素。
通过对这些类别的细致标注,RFEX-COCO数据集为YOLOv11模型的训练提供了坚实的基础,使其能够在复杂的城市环境中更准确地识别和分类道路障碍物。该数据集不仅有助于提升模型的检测精度,还能增强其在不同场景下的泛化能力,确保在真实世界应用中能够有效应对各种挑战。总之,RFEX-COCO数据集的构建与应用,将为道路安全和智能交通系统的发展提供重要支持。
核心代码
以下是简化后的代码,保留了核心部分,并添加了详细的中文注释:
import torch
import torch.nn as nn
import math
import itertools
class Attention4D(nn.Module):
“”“4D注意力机制模块”“”
def init(self, dim=384, key_dim=32, num_heads=8, attn_ratio=4, resolution=7):
super().init()
self.num_heads = num_heads # 注意力头的数量
self.scale = key_dim ** -0.5 # 缩放因子
self.resolution = resolution # 输入的分辨率
self.N = resolution ** 2 # 输入的总位置数
# 定义查询、键、值的卷积层
self.q = nn.Conv2d(dim, num_heads * key_dim, kernel_size=1)
self.k = nn.Conv2d(dim, num_heads * key_dim, kernel_size=1)
self.v = nn.Conv2d(dim, num_heads * attn_ratio * key_dim, kernel_size=1)
# 注意力偏置参数
self.attention_biases = nn.Parameter(torch.zeros(num_heads, len(self._get_attention_offsets())))
def _get_attention_offsets(self):
"""计算注意力偏置的偏移量"""
points = list(itertools.product(range(self.resolution), repeat=2))
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
return idxs
def forward(self, x):
"""前向传播"""
B, C, H, W = x.shape # B: 批量大小, C: 通道数, H: 高度, W: 宽度
q = self.q(x).view(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2) # 查询
k = self.k(x).view(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3) # 键
v = self.v(x).view(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2) # 值
# 计算注意力权重
attn = (q @ k) * self.scale + self.attention_biases
attn = attn.softmax(dim=-1) # 归一化
# 应用注意力权重
x = (attn @ v).permute(0, 1, 3, 2).reshape(B, -1, self.resolution, self.resolution)
return x
class EfficientFormerV2(nn.Module):
“”“EfficientFormer V2模型”“”
def init(self, layers, embed_dims):
super().init()
self.patch_embed = nn.Conv2d(3, embed_dims[0], kernel_size=3, stride=2, padding=1) # 初始嵌入层
self.network = nn.ModuleList() # 存储网络的各个层
for i in range(len(layers)):
# 添加每个层的注意力模块
self.network.append(Attention4D(dim=embed_dims[i], resolution=math.ceil(640 / (2 ** (i + 2)))))
def forward(self, x):
"""前向传播"""
x = self.patch_embed(x) # 通过嵌入层
for block in self.network:
x = block(x) # 通过每个注意力模块
return x
def efficientformerv2_s0():
“”“创建EfficientFormer V2 S0模型实例”“”
model = EfficientFormerV2(layers=[2, 2, 6, 4], embed_dims=[32, 48, 96, 176])
return model
if name == ‘main’:
inputs = torch.randn((1, 3, 640, 640)) # 输入张量
model = efficientformerv2_s0() # 创建模型
res = model(inputs) # 前向传播
print(res.size()) # 输出结果的尺寸
代码说明:
Attention4D类:实现了一个4D注意力机制模块,包含查询、键、值的卷积层,并计算注意力权重。
EfficientFormerV2类:构建了EfficientFormer V2模型,包含多个注意力模块。
efficientformerv2_s0函数:创建S0版本的EfficientFormer V2模型实例。
主程序:生成一个随机输入,创建模型并进行前向传播,最后输出结果的尺寸。
以上代码是EfficientFormer V2模型的核心部分,去除了不必要的复杂性,便于理解和使用。
这个程序文件实现了一个名为 EfficientFormerV2 的深度学习模型,主要用于图像处理任务,如图像分类。该模型基于高效的变换器架构,具有多种配置以适应不同的应用需求。
首先,文件中定义了一些模型的超参数,包括不同规模的模型的宽度和深度。EfficientFormer_width 和 EfficientFormer_depth 字典分别定义了不同模型(如 S0、S1、S2 和 L)的通道数和层数。这些参数为后续模型的构建提供了基础。
接下来,定义了多个类,其中 Attention4D 和 Attention4DDownsample 是实现自注意力机制的关键模块。这些模块通过卷积层和注意力机制来处理输入数据,并在空间上进行信息聚合。Attention4D 类中实现了多头自注意力机制,支持可选的下采样功能,而 Attention4DDownsample 则专注于在下采样时保持特征的完整性。
Embedding 类用于将输入图像嵌入到更高维的特征空间,采用卷积操作和归一化层。Mlp 类实现了多层感知机(MLP),用于进一步处理特征。AttnFFN 和 FFN 类则结合了注意力机制和前馈网络,形成了模型的基本构建块。
eformer_block 函数用于构建一个块,其中包含多个 AttnFFN 和 FFN 层,允许根据给定的层数和其他参数灵活配置模型结构。EfficientFormerV2 类则是整个模型的主体,负责将各个块组合在一起,并定义前向传播的逻辑。
在模型的前向传播中,输入图像首先通过 patch_embed 进行处理,然后依次通过网络中的各个块,最终输出特征。模型支持在不同的阶段提取特征,以便于后续的分类或其他任务。
文件的最后部分定义了一些函数,用于创建不同规模的 EfficientFormerV2 模型,并加载预训练权重。通过 efficientformerv2_s0、efficientformerv2_s1、efficientformerv2_s2 和 efficientformerv2_l 函数,可以快速实例化不同配置的模型。
在 main 部分,程序创建了输入张量并测试了不同规模的模型,输出了每个模型的特征图尺寸。这为用户提供了一个简单的接口来验证模型的功能和性能。
总体而言,这个程序文件实现了一个灵活且高效的图像处理模型,适用于各种计算机视觉任务。
10.4 cfpt.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.layers import to_2tuple, trunc_normal_
class CrossLayerPosEmbedding3D(nn.Module):
def init(self, num_heads=4, window_size=(5, 3, 1), spatial=True):
super(CrossLayerPosEmbedding3D, self).init()
self.spatial = spatial # 是否使用空间位置嵌入
self.num_heads = num_heads # 注意力头的数量
self.layer_num = len(window_size) # 层数
# 初始化相对位置偏置表
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[0] - 1), num_heads)
)
# 计算相对位置索引
self.register_buffer(“relative_position_index”, self.calculate_relative_position_index(window_size))
trunc_normal_(self.relative_position_bias_table, std=.02) # 初始化相对位置偏置
# 初始化绝对位置偏置
self.absolute_position_bias = nn.Parameter(torch.zeros(len(window_size), num_heads, 1, 1, 1))
trunc_normal_(self.absolute_position_bias, std=.02) # 初始化绝对位置偏置
def calculate_relative_position_index(self, window_size):
# 计算相对位置索引的逻辑
coords_h = [torch.arange(ws) - ws // 2 for ws in window_size]
coords_w = [torch.arange(ws) - ws // 2 for ws in window_size]
coords = [torch.stack(torch.meshgrid([coord_h, coord_w])) for coord_h, coord_w in zip(coords_h, coords_w)]
coords_flatten = torch.cat([torch.flatten(coord, 1) for coord in coords], dim=-1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += window_size[0] - 1
relative_coords[:, :, 1] += window_size[0] - 1
relative_coords[:, :, 0] *= 2 * window_size[0] - 1
return relative_coords.sum(-1)
def forward(self):
# 前向传播,计算位置嵌入
pos_indicies = self.relative_position_index.view(-1)
pos_indicies_floor = torch.floor(pos_indicies).long()
pos_indicies_ceil = torch.ceil(pos_indicies).long()
value_floor = self.relative_position_bias_table[pos_indicies_floor]
value_ceil = self.relative_position_bias_table[pos_indicies_ceil]
weights_ceil = pos_indicies - pos_indicies_floor.float()
weights_floor = 1.0 - weights_ceil
pos_embed = weights_floor.unsqueeze(-1) * value_floor + weights_ceil.unsqueeze(-1) * value_ceil
pos_embed = pos_embed.reshape(1, 1, self.num_token, -1, self.num_heads).permute(0, 4, 1, 2, 3)
# 返回位置嵌入
return pos_embed
class CrossLayerSpatialAttention(nn.Module):
def init(self, in_dim, layer_num=3, beta=1, num_heads=4, mlp_ratio=2, reduction=4):
super(CrossLayerSpatialAttention, self).init()
self.num_heads = num_heads # 注意力头的数量
self.reduction = reduction # 降维比例
self.window_sizes = [(2 ** i + beta) if i != 0 else (2 ** i + beta - 1) for i in range(layer_num)][::-1]
self.token_num_per_layer = [i ** 2 for i in self.window_sizes] # 每层的token数量
self.token_num = sum(self.token_num_per_layer) # 总token数量
# 初始化卷积层、归一化层、注意力层等
self.cpe = nn.ModuleList([ConvPosEnc(dim=in_dim, k=3) for _ in range(layer_num)])
self.norm1 = nn.ModuleList(LayerNormProxy(in_dim) for _ in range(layer_num))
self.norm2 = nn.ModuleList(nn.LayerNorm(in_dim) for _ in range(layer_num))
self.qkv = nn.ModuleList(nn.Conv2d(in_dim, in_dim, kernel_size=1) for _ in range(layer_num))
self.softmax = nn.Softmax(dim=-1)
self.proj = nn.ModuleList(nn.Conv2d(in_dim, in_dim, kernel_size=1) for _ in range(layer_num))
self.pos_embed = CrossLayerPosEmbedding3D(num_heads=num_heads, window_size=self.window_sizes, spatial=True)
def forward(self, x_list):
# 前向传播,计算注意力
q_list, k_list, v_list = [], [], []
for i, x in enumerate(x_list):
qkv = self.qkv[i](x) # 计算Q、K、V
q, k, v = qkv.chunk(3, dim=1) # 分割Q、K、V
q_list.append(q)
k_list.append(k)
v_list.append(v)
# 计算注意力
q_stack = torch.cat(q_list, dim=1)
k_stack = torch.cat(k_list, dim=1)
v_stack = torch.cat(v_list, dim=1)
attn = F.normalize(q_stack, dim=-1) @ F.normalize(k_stack, dim=-1).transpose(-1, -2)
attn = attn + self.pos_embed() # 加入位置嵌入
attn = self.softmax(attn)
# 计算输出
out = attn @ v_stack
return out
class ConvPosEnc(nn.Module):
def init(self, dim, k=3, act=True):
super(ConvPosEnc, self).init()
self.proj = nn.Conv2d(dim, dim, kernel_size=k, padding=k // 2, groups=dim) # 深度可分离卷积
self.activation = nn.GELU() if act else nn.Identity() # 激活函数
def forward(self, x):
feat = self.proj(x) # 卷积操作
return x + self.activation(feat) # 残差连接
代码核心部分说明:
CrossLayerPosEmbedding3D: 该类用于计算跨层的3D位置嵌入,包括相对位置和绝对位置的偏置。通过计算相对位置索引来生成位置嵌入,便于后续的注意力计算。
CrossLayerSpatialAttention: 该类实现了跨层空间注意力机制。它通过对输入进行卷积操作生成Q、K、V,并计算注意力权重,最后结合位置嵌入生成输出。
ConvPosEnc: 该类实现了卷积位置编码,通过深度可分离卷积来增强特征表示,并使用激活函数进行非线性变换。
这些核心部分共同构成了一个高效的跨层注意力机制,适用于图像处理等任务。
这个程序文件 cfpt.py 定义了两个主要的类:CrossLayerChannelAttention 和 CrossLayerSpatialAttention,它们实现了跨层的通道注意力和空间注意力机制。这些类主要用于深度学习中的视觉任务,尤其是在处理图像数据时。
首先,文件导入了一些必要的库,包括 PyTorch 和 einops。接着,定义了一个 LayerNormProxy 类,它是对 PyTorch 的 LayerNorm 的封装,主要用于在特定维度上进行归一化操作。它通过 einops 库来调整输入张量的维度,以适应归一化的要求。
接下来是 CrossLayerPosEmbedding3D 类,它用于生成跨层的三维位置嵌入。该类根据输入的窗口大小和头数初始化相应的参数,并计算相对位置索引和绝对位置偏置。它的 forward 方法生成位置嵌入,用于后续的注意力计算。
ConvPosEnc 类实现了卷积位置编码,使用深度可分离卷积对输入进行处理,并通过激活函数(如 GELU)进行非线性变换。
DWConv 类定义了深度卷积操作,主要用于在通道维度上进行卷积,保持输入和输出的通道数一致。
Mlp 类实现了一个简单的多层感知机,包含两个线性层和一个激活函数,用于对输入特征进行处理。
接下来的几个函数实现了重叠窗口的分割和重组操作,分别用于空间和通道维度的处理。这些函数在注意力机制中用于处理输入张量的不同部分,以便进行更细粒度的注意力计算。
CrossLayerSpatialAttention 类实现了跨层空间注意力机制。它通过多层的卷积、归一化和注意力计算来处理输入的特征图。该类的 forward 方法接收多个输入特征图,计算它们之间的注意力,并返回处理后的特征图。
CrossLayerChannelAttention 类实现了跨层通道注意力机制,类似于空间注意力,但它在通道维度上进行操作。该类的 forward 方法同样接收多个输入特征图,计算通道之间的注意力,并返回处理后的特征图。
总体来说,这个文件实现了一个复杂的注意力机制,结合了空间和通道的信息,适用于需要处理多层特征的深度学习模型,尤其是在图像处理和计算机视觉任务中。通过这种机制,模型能够更好地捕捉不同层次的特征,从而提高性能。
源码文件
源码获取
欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻