背景意义
研究背景与意义
随着城市化进程的加快,城市交通问题日益严重,停车难已成为许多城市面临的普遍挑战。有效的停车管理不仅能够提高城市交通的流动性,还能提升居民的生活质量。因此,开发一种高效的停车位状态检测系统显得尤为重要。基于深度学习的计算机视觉技术,尤其是目标检测算法的快速发展,为停车位状态的实时监测提供了新的解决方案。
本研究旨在基于改进的YOLOv11模型,构建一个高效的停车位状态检测系统。该系统能够实时识别停车位的状态,分类为“占用”(Busy)和“空闲”(Free),从而为驾驶员提供及时的停车信息,减少寻找停车位的时间,降低交通拥堵。通过使用包含3100张标注图像的数据集,系统能够在多种环境下进行训练和测试,确保其在实际应用中的鲁棒性和准确性。
停车位状态检测不仅对个人驾驶者有直接的益处,还能为城市交通管理提供数据支持。通过分析停车位的使用情况,城市管理者可以优化停车资源的配置,制定更合理的停车政策。此外,结合实时数据,智能交通系统可以为驾驶者提供更为精准的导航服务,提升整体交通效率。
综上所述,基于改进YOLOv11的停车位状态检测系统的研究具有重要的理论意义和实际应用价值。它不仅推动了计算机视觉技术在智能交通领域的应用,还为解决城市停车难题提供了创新的思路和方法。通过该系统的开发与应用,期待能够为未来的智慧城市建设贡献一份力量。
图片效果
数据集信息
本项目数据集信息介绍
本项目旨在改进YOLOv11的停车位状态检测系统,因此所使用的数据集围绕“ParkingSlots”主题进行构建。该数据集专注于停车位的状态分类,包含两种主要类别:‘Busy’(占用)和‘Free’(空闲)。通过对这两种状态的精确识别,系统能够实时监测停车场的使用情况,从而为驾驶员提供有效的停车指导,提升停车效率,减少寻找停车位所需的时间。
数据集的构建过程涉及大量的图像采集与标注工作。为了确保数据的多样性和代表性,数据来源于不同类型的停车场,包括城市街道、商业区、住宅区等。每张图像均经过严格的标注,确保其准确反映停车位的真实状态。这一过程不仅提高了数据集的质量,也为后续的模型训练提供了坚实的基础。
在数据集的规模方面,涵盖了数千张图像,充分考虑了不同天气、光照条件及时间段的变化,确保模型在各种环境下均能保持良好的性能。此外,数据集还包含了不同角度和距离拍摄的停车位图像,以增强模型的泛化能力。这种多样化的训练数据将有助于YOLOv11在实际应用中更准确地识别停车位状态,从而有效降低误报率和漏报率。
通过使用这一数据集,研究团队期望能够提升停车位状态检测系统的准确性和可靠性,为智能交通系统的发展贡献力量。最终,改进后的系统将为城市交通管理提供有力支持,帮助解决停车难的问题,提升城市的整体交通效率。
核心代码
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import torch.nn.functional as F
from …modules.conv import Conv
定义基本的卷积块
class BasicBlock(nn.Module):
def init(self, filter_in, filter_out):
super(BasicBlock, self).init()
# 定义两个卷积层
self.conv1 = Conv(filter_in, filter_out, 3) # 第一个卷积层,卷积核大小为3
self.conv2 = Conv(filter_out, filter_out, 3, act=False) # 第二个卷积层,卷积核大小为3,不使用激活函数
def forward(self, x):
residual = x # 保存输入作为残差
out = self.conv1(x) # 通过第一个卷积层
out = self.conv2(out) # 通过第二个卷积层
out += residual # 添加残差
return self.conv1.act(out) # 返回经过激活函数处理的输出
定义上采样模块
class Upsample(nn.Module):
def init(self, in_channels, out_channels, scale_factor=2):
super(Upsample, self).init()
# 定义上采样操作,使用1x1卷积层后接双线性插值上采样
self.upsample = nn.Sequential(
Conv(in_channels, out_channels, 1), # 1x1卷积
nn.Upsample(scale_factor=scale_factor, mode=‘bilinear’) # 双线性插值上采样
)
def forward(self, x):
return self.upsample(x) # 前向传播
定义自适应特征融合模块(ASFF)
class ASFF_2(nn.Module):
def init(self, inter_dim=512):
super(ASFF_2, self).init()
self.inter_dim = inter_dim
compress_c = 8 # 压缩通道数
# 定义权重计算卷积层
self.weight_level_1 = Conv(self.inter_dim, compress_c, 1)
self.weight_level_2 = Conv(self.inter_dim, compress_c, 1)
self.weight_levels = nn.Conv2d(compress_c * 2, 2, kernel_size=1, stride=1, padding=0) # 计算融合权重
self.conv = Conv(self.inter_dim, self.inter_dim, 3) # 最后的卷积层
def forward(self, input1, input2):
# 计算每个输入的权重
level_1_weight_v = self.weight_level_1(input1)
level_2_weight_v = self.weight_level_2(input2)
# 合并权重并计算最终权重
levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v), 1)
levels_weight = self.weight_levels(levels_weight_v)
levels_weight = F.softmax(levels_weight, dim=1) # 使用softmax归一化权重
# 融合输入特征
fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + input2 * levels_weight[:, 1:2, :, :]
out = self.conv(fused_out_reduced) # 通过卷积层
return out # 返回融合后的输出
定义特征金字塔网络(AFPN)
class AFPN_P345(nn.Module):
def init(self, in_channels=[256, 512, 1024], out_channels=256, factor=4):
super(AFPN_P345, self).init()
# 定义输入通道到压缩通道的卷积层
self.conv0 = Conv(in_channels[0], in_channels[0] // factor, 1)
self.conv1 = Conv(in_channels[1], in_channels[1] // factor, 1)
self.conv2 = Conv(in_channels[2], in_channels[2] // factor, 1)
# 定义特征块
self.body = BlockBody_P345([in_channels[0] // factor, in_channels[1] // factor, in_channels[2] // factor])
# 定义输出卷积层
self.conv00 = Conv(in_channels[0] // factor, out_channels, 1)
self.conv11 = Conv(in_channels[1] // factor, out_channels, 1)
self.conv22 = Conv(in_channels[2] // factor, out_channels, 1)
def forward(self, x):
x0, x1, x2 = x # 解包输入特征
x0 = self.conv0(x0) # 通过卷积层
x1 = self.conv1(x1)
x2 = self.conv2(x2)
out0, out1, out2 = self.body([x0, x1, x2]) # 通过特征块
out0 = self.conv00(out0) # 输出卷积
out1 = self.conv11(out1)
out2 = self.conv22(out2)
return [out0, out1, out2] # 返回输出特征
代码核心部分说明:
BasicBlock: 定义了一个基本的卷积块,包含两个卷积层和残差连接。
Upsample: 实现了上采样功能,使用1x1卷积和双线性插值。
ASFF_2: 自适应特征融合模块,计算输入特征的权重并融合特征。
AFPN_P345: 特征金字塔网络的实现,包含输入特征的卷积、特征块处理和输出卷积。
这些模块是构建特征金字塔网络的基础,能够有效地处理多尺度特征并进行融合。
这个程序文件 afpn.py 实现了一个用于计算机视觉任务的特征金字塔网络(FPN),具体来说是自适应特征金字塔网络(AFPN)。该网络主要用于目标检测和图像分割等任务,通过不同尺度的特征融合来提高模型的性能。
文件中定义了多个类,首先是 BasicBlock 类,它是一个基本的卷积块,包含两个卷积层,第二个卷积层不使用激活函数。它的前向传播方法实现了残差连接,即输入与卷积结果相加,形成更深层次的特征。
接下来是几个下采样和上采样的类,包括 Downsample_x2、Downsample_x4、Downsample_x8 和 Upsample,这些类分别实现了不同的下采样和上采样操作,利用卷积层和插值方法来改变特征图的尺寸。
ASFF_2、ASFF_3 和 ASFF_4 类实现了自适应特征融合模块,分别用于处理两个、三个和四个输入特征图。每个模块通过计算权重来融合不同尺度的特征图,并通过卷积层进一步处理融合后的特征。
BlockBody_P345 和 BlockBody_P2345 类是网络的主体部分,分别处理三个和四个输入特征图。它们包含多个卷积块和自适应特征融合模块,通过不同的上采样和下采样操作实现特征的多尺度融合。
AFPN_P345 和 AFPN_P2345 类是网络的顶层结构,负责输入特征图的初步处理和最终输出。它们将输入特征图通过卷积层进行通道数的调整,然后将处理后的特征图传递给主体部分进行进一步的特征融合和处理。
最后,BlockBody_P345_Custom 和 BlockBody_P2345_Custom 类允许用户自定义使用的卷积块类型,以便在不同的任务中灵活调整网络结构。
整体来看,这个程序文件实现了一个灵活且强大的特征金字塔网络,能够有效地处理多尺度特征,并在目标检测和图像分割等任务中取得良好的效果。
10.4 kagn_conv.py
以下是经过简化和注释的核心代码部分:
import torch
import torch.nn as nn
from functools import lru_cache
class KAGNConvNDLayer(nn.Module):
def init(self, conv_class, norm_class, conv_w_fun, input_dim, output_dim, degree, kernel_size,
groups=1, padding=0, stride=1, dilation=1, dropout: float = 0.0, ndim: int = 2):
super(KAGNConvNDLayer, self).init()
# 初始化参数
self.inputdim = input_dim
self.outdim = output_dim
self.degree = degree
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
self.dilation = dilation
self.groups = groups
self.base_activation = nn.SiLU() # 使用SiLU激活函数
self.conv_w_fun = conv_w_fun # 卷积权重函数
self.ndim = ndim # 维度
self.dropout = nn.Dropout2d(p=dropout) if ndim == 2 else nn.Dropout3d(p=dropout) if ndim == 3 else nn.Dropout1d(p=dropout) if ndim == 1 else None
# 检查参数有效性
if groups <= 0 or input_dim % groups != 0 or output_dim % groups != 0:
raise ValueError('groups must be a positive integer and input/output dimensions must be divisible by groups')
# 创建卷积层和归一化层
self.base_conv = nn.ModuleList([conv_class(input_dim // groups, output_dim // groups, kernel_size, stride, padding, dilation, groups=1, bias=False) for _ in range(groups)])
self.layer_norm = nn.ModuleList([norm_class(output_dim // groups) for _ in range(groups)])
# 多项式权重初始化
poly_shape = (groups, output_dim // groups, (input_dim // groups) * (degree + 1)) + (kernel_size,) * ndim
self.poly_weights = nn.Parameter(torch.randn(*poly_shape)) # 多项式权重
self.beta_weights = nn.Parameter(torch.zeros(degree + 1, dtype=torch.float32)) # beta权重
# 权重初始化
for conv_layer in self.base_conv:
nn.init.kaiming_uniform_(conv_layer.weight, nonlinearity='linear')
nn.init.kaiming_uniform_(self.poly_weights, nonlinearity='linear')
nn.init.normal_(self.beta_weights, mean=0.0, std=1.0 / ((kernel_size ** ndim) * self.inputdim * (self.degree + 1.0)))
def beta(self, n, m):
# 计算beta值
return (((m + n) * (m - n) * n ** 2) / (m ** 2 / (4.0 * n ** 2 - 1.0))) * self.beta_weights[n]
@lru_cache(maxsize=128) # 缓存以避免重复计算
def gram_poly(self, x, degree):
# 计算Gram多项式
p0 = x.new_ones(x.size())
if degree == 0:
return p0.unsqueeze(-1)
p1 = x
grams_basis = [p0, p1]
for i in range(2, degree + 1):
p2 = x * p1 - self.beta(i - 1, i) * p0
grams_basis.append(p2)
p0, p1 = p1, p2
return torch.cat(grams_basis, dim=1)
def forward_kag(self, x, group_index):
# 前向传播,处理每个组的输入
basis = self.base_conv[group_index](self.base_activation(x)) # 基础卷积
x = torch.tanh(x).contiguous() # 归一化输入
if self.dropout is not None:
x = self.dropout(x) # 应用dropout
grams_basis = self.base_activation(self.gram_poly(x, self.degree)) # 计算Gram基
y = self.conv_w_fun(grams_basis, self.poly_weights[group_index], stride=self.stride, dilation=self.dilation, padding=self.padding, groups=1) # 卷积操作
y = self.base_activation(self.layer_norm[group_index](y + basis)) # 归一化和激活
return y
def forward(self, x):
# 前向传播,处理所有组的输入
split_x = torch.split(x, self.inputdim // self.groups, dim=1) # 按组分割输入
output = []
for group_ind, _x in enumerate(split_x):
y = self.forward_kag(_x.clone(), group_ind) # 处理每个组
output.append(y.clone())
y = torch.cat(output, dim=1) # 合并输出
return y
代码说明:
KAGNConvNDLayer类:这是一个自定义的神经网络层,支持多维卷积(1D、2D、3D)。
初始化方法:设置输入输出维度、卷积参数、激活函数等,并初始化卷积层和归一化层。
beta方法:计算用于Gram多项式的beta值。
gram_poly方法:计算Gram多项式的基,使用缓存以提高效率。
forward_kag方法:实现前向传播,处理每个组的输入,进行卷积和归一化。
forward方法:处理所有组的输入,返回最终输出。
这个程序文件 kagn_conv.py 定义了一系列用于卷积神经网络的层,主要是基于 KAGN(Kochawongwat 的一种卷积层)设计的。程序使用了 PyTorch 框架,包含了多维卷积层的实现,包括一维、二维和三维卷积层。
首先,KAGNConvNDLayer 类是一个通用的卷积层类,支持任意维度的卷积。它的构造函数接受多个参数,包括输入和输出维度、卷积核大小、分组数、填充、步幅、扩张、丢弃率等。构造函数中还定义了基础激活函数(使用 SiLU 激活函数),并根据输入的维度选择相应的丢弃层(Dropout)。在初始化过程中,程序会检查分组数和输入输出维度的有效性,并创建多个卷积层和归一化层(Layer Normalization)。
接下来,程序定义了多项式权重和 beta 权重,这些权重用于后续的计算。权重的初始化使用了 Kaiming 均匀分布,以便在训练开始时提供更好的性能。
beta 方法用于计算与 Legendre 多项式相关的 beta 值,而 gram_poly 方法则计算给定度数的 Gram 多项式。该方法使用了缓存机制,以避免重复计算。
forward_kag 方法是该层的前向传播逻辑。它首先对输入应用基础激活函数,然后通过基础卷积层进行线性变换。接着,输入会被归一化到 [-1, 1] 的范围,以便于计算 Legendre 多项式。之后,计算 Gram 多项式基,并通过卷积权重函数进行卷积操作,最后通过归一化层和激活函数得到输出。
forward 方法负责处理输入数据,首先将输入按组分割,然后对每个组调用 forward_kag 方法进行处理,最后将所有组的输出拼接在一起。
在此基础上,程序还定义了三个具体的卷积层类:KAGNConv3DLayer、KAGNConv2DLayer 和 KAGNConv1DLayer,分别用于三维、二维和一维卷积。这些类通过调用 KAGNConvNDLayer 的构造函数,传入相应的卷积和归一化类,简化了不同维度卷积层的实现。
总体来说,这个程序文件实现了一个灵活且可扩展的卷积层结构,适用于多种维度的卷积操作,并引入了 Gram 多项式的概念,以增强网络的表达能力。
源码文件
源码获取
欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式