背景意义
随着人工智能技术的迅猛发展,计算机视觉在各个领域的应用日益广泛,尤其是在图像识别和实例分割方面。国际象棋作为一种经典的策略游戏,其棋子种类繁多且形态各异,给计算机视觉技术的应用提供了丰富的研究素材。基于此,构建一个高效的国际象棋棋子实例分割系统,不仅能够提升棋类游戏的智能化水平,还能为相关领域的研究提供新的思路和方法。
在国际象棋的实例分割任务中,传统的图像处理方法往往难以满足实时性和准确性的要求。因此,采用先进的深度学习模型,如YOLO(You Only Look Once)系列,成为了研究的热点。YOLOv11作为YOLO系列的最新版本,具有更高的检测精度和更快的处理速度,能够有效地识别和分割不同类型的棋子。通过对YOLOv11的改进,结合针对国际象棋棋子的特定需求,可以进一步提升模型的性能,使其在复杂背景下依然能够准确识别和分割棋子。
本研究所使用的数据集包含10000张经过精细标注的国际象棋棋子图像,涵盖了12种不同的棋子类别。这一数据集为模型的训练和评估提供了坚实的基础,能够有效支持模型在多样化场景下的泛化能力。通过对数据集的深度分析与处理,结合YOLOv11的强大功能,期望能够实现对国际象棋棋子的高效实例分割,为棋类游戏的智能化发展贡献力量。
此外,构建这一系统的意义还在于推动计算机视觉技术在其他领域的应用。通过对国际象棋棋子的实例分割研究,积累的经验和技术可以迁移到其他物体识别和分割任务中,促进计算机视觉技术的广泛应用与发展。因此,本研究不仅具有学术价值,也具备重要的实际应用前景。
图片效果
数据集信息
本项目所使用的数据集专注于国际象棋棋子的实例分割,旨在改进YOLOv11模型的性能,以实现更高效的棋子识别和定位。该数据集包含12个类别,涵盖了国际象棋游戏中所有主要棋子的视觉特征。每个类别的样本经过精心标注,确保在训练过程中能够提供准确的输入数据,从而提升模型的识别能力和精度。具体而言,数据集中的类别包括:国王、皇后、车、马、象、兵等,确保涵盖了国际象棋的所有基本棋子。
数据集的构建过程注重数据的多样性和代表性,采集了不同光照、角度和背景下的棋子图像,以模拟真实游戏环境中的各种情况。这种多样性不仅增强了模型的泛化能力,还提高了其在复杂场景下的表现。此外,数据集还包含了经过专业标注的图像,确保每个棋子的边界和特征得到了准确的定义,从而为实例分割任务提供了坚实的基础。
为了支持模型的训练和优化,数据集还配备了丰富的附加信息,包括图像的来源、拍摄条件以及标注的详细说明。这些信息有助于研究人员在分析模型表现时进行更深入的理解和调整。同时,数据集的设计考虑到了未来的扩展性,支持通过主动学习等方法不断更新和完善,以适应日益变化的计算机视觉需求。
总之,本项目的数据集不仅为国际象棋棋子实例分割提供了高质量的训练材料,还为相关研究提供了宝贵的参考依据,助力于推动计算机视觉领域的进一步发展。
核心代码
以下是经过简化和注释的核心代码部分,主要包括 ChannelTransformer 类及其相关组件。
import torch
import torch.nn as nn
import numpy as np
from torch.nn import Dropout, LayerNorm
class Channel_Embeddings(nn.Module):
“”“从图像块和位置嵌入构建通道嵌入。”“”
def init(self, patchsize, img_size, in_channels):
super().init()
img_size = (img_size, img_size) # 将图像大小转换为元组
patch_size = (patchsize, patchsize) # 将补丁大小转换为元组
n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1]) # 计算补丁数量
# 定义补丁嵌入层
self.patch_embeddings = nn.Sequential(
nn.MaxPool2d(kernel_size=5, stride=5), # 最大池化层
nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=patchsize // 5, stride=patchsize // 5) # 卷积层
)
# 定义位置嵌入参数
self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches, in_channels))
self.dropout = Dropout(0.1) # Dropout层,防止过拟合
def forward(self, x):
"""前向传播,计算嵌入。"""
if x is None:
return None
x = self.patch_embeddings(x) # 通过补丁嵌入层
x = x.flatten(2) # 展平
x = x.transpose(-1, -2) # 转置
embeddings = x + self.position_embeddings # 添加位置嵌入
embeddings = self.dropout(embeddings) # 应用Dropout
return embeddings
class ChannelTransformer(nn.Module):
“”“通道变换器模型。”“”
def init(self, channel_num=[64, 128, 256, 512], img_size=640, patchSize=[40, 20, 10, 5]):
super().init()
# 初始化补丁大小和嵌入层
self.embeddings_1 = Channel_Embeddings(patchSize[0], img_size=img_size // 8, in_channels=channel_num[0])
self.embeddings_2 = Channel_Embeddings(patchSize[1], img_size=img_size // 16, in_channels=channel_num[1])
self.embeddings_3 = Channel_Embeddings(patchSize[2], img_size=img_size // 32, in_channels=channel_num[2])
self.embeddings_4 = Channel_Embeddings(patchSize[3], img_size=img_size // 64, in_channels=channel_num[3]) if len(channel_num) == 4 else nn.Identity()
def forward(self, en):
"""前向传播,计算输出。"""
# 根据输入的数量选择相应的嵌入
if len(en) == 3:
en1, en2, en3 = en
en4 = None
elif len(en) == 4:
en1, en2, en3, en4 = en
# 计算嵌入
emb1 = self.embeddings_1(en1) if en1 is not None else None
emb2 = self.embeddings_2(en2) if en2 is not None else None
emb3 = self.embeddings_3(en3) if en3 is not None else None
emb4 = self.embeddings_4(en4) if en4 is not None else None
# 返回经过嵌入后的结果
return [emb1, emb2, emb3, emb4]
class GetIndexOutput(nn.Module):
“”“获取特定索引的输出。”“”
def init(self, index) -> None:
super().init()
self.index = index
def forward(self, x):
"""返回指定索引的输出。"""
return x[self.index]
代码说明:
Channel_Embeddings 类:负责将输入图像转换为补丁嵌入和位置嵌入,并应用 Dropout 以减少过拟合。
ChannelTransformer 类:构建整个通道变换器模型,包含多个嵌入层。根据输入的数量,选择相应的嵌入。
GetIndexOutput 类:用于从输出中获取特定索引的结果,方便后续处理。
以上是核心部分的代码和详细注释,帮助理解模型的结构和功能。
这个程序文件 CTrans.py 实现了一个名为 ChannelTransformer 的深度学习模型,主要用于图像处理任务。模型的结构和功能可以分为几个主要部分。
首先,文件导入了一些必要的库,包括 PyTorch 和 NumPy,这些库提供了构建和训练神经网络所需的基础功能。接着,定义了一些类,每个类负责模型的不同组成部分。
Channel_Embeddings 类用于构建输入图像的嵌入。它通过卷积和池化操作将输入图像划分为多个小块(patch),并为每个小块生成位置嵌入。该类的 forward 方法负责将输入数据转换为嵌入表示,并应用 dropout 操作以防止过拟合。
Reconstruct 类则用于重建特征图,它通过卷积和上采样操作将嵌入特征图转换回原始图像的尺寸。这个类的 forward 方法将输入的嵌入转换为更高分辨率的特征图,并应用批归一化和激活函数。
Attention_org 类实现了多头自注意力机制。它通过查询(query)、键(key)和值(value)向量的线性变换计算注意力分数,并通过 softmax 函数生成注意力权重。这个类的 forward 方法接收多个嵌入,并计算它们之间的注意力关系,最终输出加权后的特征表示。
Mlp 类实现了一个简单的多层感知机(MLP),包含两个全连接层和激活函数。它用于在特征表示上进行非线性变换。
Block_ViT 类将自注意力机制和 MLP 结合在一起,形成一个完整的 Transformer 块。它在 forward 方法中依次应用注意力机制和 MLP,对输入的嵌入进行处理,并添加残差连接以保持信息流动。
Encoder 类则由多个 Block_ViT 组成,负责对输入的嵌入进行多层处理,提取更高层次的特征。
ChannelTransformer 类是整个模型的核心,包含了嵌入层、编码器和重建层。它的 forward 方法接收输入图像的多个通道,生成嵌入,经过编码器处理后,再通过重建层输出结果。
最后,GetIndexOutput 类用于从模型的输出中提取特定索引的结果,便于后续处理。
整体来看,这个程序实现了一个基于 Transformer 的图像处理模型,结合了自注意力机制和多层感知机,能够有效地处理图像数据并提取特征。模型的设计考虑了多通道输入,适用于复杂的图像分析任务。
10.4 EfficientFormerV2.py
以下是经过简化并添加详细中文注释的核心代码部分:
import torch
import torch.nn as nn
import math
import itertools
class Attention4D(nn.Module):
“”"
4D注意力机制模块
“”"
def init(self, dim=384, key_dim=32, num_heads=8, attn_ratio=4, resolution=7, act_layer=nn.ReLU, stride=None):
super().init()
self.num_heads = num_heads # 注意力头的数量
self.scale = key_dim ** -0.5 # 缩放因子
self.key_dim = key_dim # 键的维度
self.nh_kd = key_dim * num_heads # 每个头的键的总维度
# 根据stride调整分辨率
if stride is not None:
self.resolution = math.ceil(resolution / stride)
self.stride_conv = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=3, stride=stride, padding=1, groups=dim),
nn.BatchNorm2d(dim),
)
self.upsample = nn.Upsample(scale_factor=stride, mode='bilinear')
else:
self.resolution = resolution
self.stride_conv = None
self.upsample = None
self.N = self.resolution ** 2 # 总的空间位置数
self.d = int(attn_ratio * key_dim) # 输出的维度
self.dh = self.d * num_heads # 每个头的输出维度总和
# 定义查询、键、值的卷积层
self.q = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.key_dim, 1), nn.BatchNorm2d(self.num_heads * self.key_dim))
self.k = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.key_dim, 1), nn.BatchNorm2d(self.num_heads * self.key_dim))
self.v = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.d, 1), nn.BatchNorm2d(self.num_heads * self.d))
# 定义局部值的卷积层
self.v_local = nn.Sequential(
nn.Conv2d(self.num_heads * self.d, self.num_heads * self.d, kernel_size=3, stride=1, padding=1, groups=self.num_heads * self.d),
nn.BatchNorm2d(self.num_heads * self.d),
)
# 定义投影层
self.proj = nn.Sequential(act_layer(), nn.Conv2d(self.dh, dim, 1), nn.BatchNorm2d(dim))
# 计算注意力偏置
points = list(itertools.product(range(self.resolution), range(self.resolution)))
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(self.N, self.N))
def forward(self, x): # x的形状为(B, C, H, W)
B, C, H, W = x.shape
if self.stride_conv is not None:
x = self.stride_conv(x) # 应用步幅卷积
# 计算查询、键、值
q = self.q(x).flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
k = self.k(x).flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3)
v = self.v(x)
v_local = self.v_local(v)
v = v.flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
# 计算注意力权重
attn = (q @ k) * self.scale + self.attention_biases[:, self.attention_bias_idxs]
attn = attn.softmax(dim=-1) # 归一化
# 计算输出
x = (attn @ v)
out = x.transpose(2, 3).reshape(B, self.dh, self.resolution, self.resolution) + v_local
if self.upsample is not None:
out = self.upsample(out)
out = self.proj(out) # 投影到原始维度
return out
class EfficientFormerV2(nn.Module):
“”"
EfficientFormerV2模型
“”"
def init(self, layers, embed_dims=None, mlp_ratios=4, downsamples=None, num_classes=1000):
super().init()
self.patch_embed = nn.Conv2d(3, embed_dims[0], kernel_size=3, stride=2, padding=1) # 初始的卷积嵌入层
network = []
for i in range(len(layers)):
# 添加每个阶段的块
stage = eformer_block(embed_dims[i], i, layers)
network.append(stage)
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
# 添加下采样层
network.append(Embedding(in_chans=embed_dims[i], embed_dim=embed_dims[i + 1]))
self.network = nn.ModuleList(network) # 将网络层存储为ModuleList
def forward(self, x):
x = self.patch_embed(x) # 通过嵌入层
for block in self.network:
x = block(x) # 逐层前向传播
return x
def eformer_block(dim, index, layers):
“”"
创建一个EfficientFormer的块
“”"
blocks = []
for block_idx in range(layers[index]):
blocks.append(Attention4D(dim)) # 添加注意力层
return nn.Sequential(*blocks) # 返回一个顺序模块
创建模型实例的函数
def efficientformerv2_s0(weights=‘’, **kwargs):
model = EfficientFormerV2(
layers=[2, 2, 6, 4], # 每个阶段的层数
embed_dims=[32, 48, 96, 176], # 嵌入维度
downsamples=[True, True, True, True], # 是否下采样
**kwargs
)
if weights:
pretrained_weight = torch.load(weights)[‘model’]
model.load_state_dict(pretrained_weight) # 加载预训练权重
return model
代码说明
Attention4D类:实现了一个4D注意力机制模块,包含查询、键、值的计算和注意力权重的生成。
EfficientFormerV2类:构建了EfficientFormerV2模型的主要结构,包含多个阶段的块和嵌入层。
eformer_block函数:用于创建一个EfficientFormer的块,包含多个注意力层。
efficientformerv2_s0函数:用于实例化EfficientFormerV2模型,并加载预训练权重(如果提供)。
这些核心部分是构建EfficientFormerV2模型的基础,包含了模型的主要功能和结构。
这个程序文件定义了一个名为 EfficientFormerV2 的深度学习模型,主要用于图像处理任务,如图像分类。代码中包含了多个类和函数,构成了整个模型的结构和功能。
首先,文件中导入了一些必要的库,包括 PyTorch 及其相关模块,数学库,以及一些用于模型构建的工具函数。接着,定义了一些超参数字典,例如 EfficientFormer_width 和 EfficientFormer_depth,这些字典分别定义了不同模型版本的宽度和深度。这些参数将用于创建不同规模的 EfficientFormer 模型。
接下来,定义了多个类,其中 Attention4D 类实现了一个四维注意力机制,允许模型在空间上进行更复杂的特征提取。该类中包含了多种卷积层和注意力计算的逻辑,能够处理输入的特征图并生成注意力加权的输出。
LGQuery 类用于生成局部和全局查询特征,通过平均池化和卷积操作来实现特征的降维和整合。Attention4DDownsample 类则是对输入特征进行下采样的注意力模块,结合了局部特征和全局特征。
Embedding 类负责将输入图像转换为嵌入特征,支持不同的处理方式(如轻量级处理或带注意力机制的处理)。Mlp 类实现了一个多层感知机,使用 1x1 卷积来进行特征的变换和激活。
AttnFFN 和 FFN 类分别实现了带注意力机制的前馈网络和普通前馈网络,二者都支持层归一化和丢弃率的设置。eformer_block 函数用于构建 EfficientFormer 的基本块,结合了注意力和前馈网络。
EfficientFormerV2 类是整个模型的核心,负责构建网络的不同层次和模块。它的构造函数接受多个参数,包括层数、嵌入维度、下采样策略等,并根据这些参数构建网络结构。该类还定义了 forward 方法,用于前向传播,返回特征输出。
此外,文件中还定义了几个函数(如 update_weight、efficientformerv2_s0 等),用于加载预训练权重和创建不同版本的 EfficientFormer 模型。
最后,在 main 块中,代码示例展示了如何创建不同规模的 EfficientFormer 模型,并使用随机输入进行前向传播,输出各层的特征图大小。这部分代码用于测试模型的构建和运行是否正常。
整体来看,这个程序文件实现了一个高效的图像处理模型,利用注意力机制和多层感知机结构,旨在提高特征提取的效率和效果。
源码文件
源码获取
欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻