(三)激光线扫描-中心线提取

本文详细介绍了线结构光三维重建中光条纹中心提取的重要性,探讨了传统算法如灰度重心法、极值法、曲线拟合法等,并重点分析了灰度重心法的优缺点及改进方法。此外,还讲解了Steger算法的高精度特点和运算效率问题,以及对Steger算法的改进策略。最后,提供了算法的Python实现和数据集链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
光条纹中心提取算法是决定线结构光三维重建精度以及光条纹轮廓定位准确性的重要因素。

1. 光条的高斯分布

激光线条和打手电筒一样,中间最亮,越像周围延申,光强越弱,这个规则符合高斯分布,如下图。

在这里插入图片描述

2. 传统光条纹中心提取算法

传统的光条纹中心提取算法有 灰度重心法阈值法极值法边缘法中心法二值形态学细化法Steger算法曲线拟合法深度约束法

2.1 灰度重心法

投射到平坦物体表面的线结构光条纹截面光强分布近似服从高斯分布,通过灰度重心法可以求出条纹横截面光强分布曲线的高斯中心,对光条纹逐行提取高斯中心,将中心点拟合形成光条纹中心线。