Spring AI PagePdfDocumentReader 全解析:基于 Apache PdfBox 的按页 PDF 读取实战

前言

在日常开发中,我们常常遇到一种令人头疼的情况:手里有一份厚厚的 PDF 文档,只能一页一页盯着看,手动复制内容的效率堪比用筷子夹西瓜,看似可行,但既费劲又毫无优雅可言。尤其是当你需要把这些文字喂给 AI 模型时,这种“原始人式”的处理方式简直像用木棍敲击电脑,痛苦指数直线上升。

为了避免开发者在 PDF 的海洋中无助漂流,Spring AI 家族特地派出一位身手敏捷的选手:PagePdfDocumentReader。它的本事可不只是单纯地“读文件”,而是能把一整本 PDF 按页切割成一份份精致的 Document,每一份都带着完整的元数据,就像给 AI 准备一盘精心切好的水果拼盘,让模型既能快速消化,又能高效理解。

更重要的是,它的使用方式优雅到让人想立刻动手试一试:只需引入依赖,配置好参数,然后轻轻一调 read() 方法,PDF 内容就会化整为零,整齐排队出现在你的代码世界。无论是做 RAG、全文检索,还是任何需要精准内容分片的场景,它都能成为你的秘密武器。

简介

PagePdfDocumentReader 是 Spring AI 提供的一款高效 PDF 文档读取器,底层依托 Apache PdfBox 进行解析。它的核心能力在于支持按页读取 PDF,将每一页内容转化为独立的 Document 对象,并配套元数据,让内容既有“肉”也有“骨架”,方便后续 AI 或检索引擎快速消化。

和传统一次性读取整份 PDF 相比,这种按页切割的方式就像是把大披萨切成均匀的片,每片都能单独端上桌,吃起来既方便又能精确控制“分量”。在 RAG(检索增强生成)、全文索引、问答系统等任务中,这种精细的粒度意味着更高的检索准确率与更低的冗余。

PagePdfDoc

### 集成 DeepSeek 模型到 Spring AI 项目中以实现 PDF 解析 为了在 Spring BootSpring AI 中集成 DeepSeek 模型并实现本地 PDF 文件解析功能,可以通过以下方式完成: #### 使用 Ollama 和 DeepSeek 的 API 进行模型调用 DeepSeek 是一种高性能的大规模语言模型 (LLM),支持通过 Ollama 提供的接口进行本地部署和调用。Spring AI 可作为中间层来封装这些操作逻辑,并将其无缝嵌入到现有的 Spring Boot 应用程序中。 以下是具体的技术细节以及代码示例: 1. **创建 Spring Boot 项目** 如果尚未创建 Spring Boot 项目,则可以从头开始构建一个新的应用程序[^2]。 2. **引入必要的依赖项** 在 `pom.xml` 文件中添加所需的依赖库,例如用于 HTTP 请求的客户端工具(如 OkHttp 或 RestTemplate),以及其他可能需要的功能模块: ```xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- JSON 处理 --> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> </dependency> ``` 3. **安装和运行 Ollama** 确保已经在服务器上成功安装了 Ollama 并加载了 DeepSeek 模型实例。这一步骤通常涉及下载二进制文件并通过命令行启动服务[^1]。 4. **编写控制器方法处理 PDF 输入** 设计 RESTful 接口接收上传的 PDF 文档数据流,并提取其中的内容传递给 LLM 模型进行分析解释。下面是一个简单的例子演示如何读取 PDF 文件内容: ```java import org.apache.pdfbox.pdmodel.PDDocument; import java.io.InputStream; public class PdfUtils { public static String extractTextFromPdf(InputStream inputStream) throws Exception { try (PDDocument document = PDDocument.load(inputStream)) { return new StringBuilder() .append(document.getDocumentInformation().getTitle()) .append("\n") .append(org.apache.pdfbox.text.PDFTextStripper.getText(document)) .toString(); } } } ``` 5. **定义与 Ollama/DeepSeek 对话的服务类** 构建专门负责向远程或本地托管的语言模型发送请求的服务组件。这里假设我们已经知道如何构造合适的 Prompt 来引导模型理解任务需求——即解析指定格式的文档摘要或者回答关于特定主题的问题。 ```java @Service public class AiService { private final WebClient webClient; public AiService(WebClient.Builder builder){ this.webClient = builder.baseUrl("http://localhost:11434").build(); // 默认OLLAMA端口号 } public String queryModel(String prompt, Map<String,Object> params){ return webClient.post() .uri("/api/generate") .bodyValue(Map.of( "prompt", prompt, "parameters",params)) .retrieve() .bodyToMono(String.class).block(); } } ``` 6. **组合上述部分形成完整的解决方案** 将前面提到的所有片段结合起来,在 Controller 层面暴露对外可用的方法路径,允许外部系统提交待处理材料的同时获取最终结果反馈。 --- ```java @RestController @RequestMapping("/pdf-parser") public class PdfParserController { @Autowired private AiService aiService; @PostMapping(consumes="multipart/form-data") public ResponseEntity<?> parse(@RequestParam MultipartFile file) { try{ InputStream is = file.getInputStream(); String pdfContent = PdfUtils.extractTextFromPdf(is); // 准备提问语句 String questionForAi = "Please summarize the following content:\n\n"+pdfContent+"\n"; // 调用AI服务获得答案 String responseFromAi = aiService.queryModel(questionForAi,new HashMap<>()); return ResponseEntity.ok(responseFromAi); }catch(Exception e){ return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body(e.getMessage()); } } } ``` 以上展示了从零搭建这样一个系统的过程概述。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星际编程喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值