【深度学习】CNN 中 1x1 卷积核的作用

本文探讨了1x1卷积核在GoogLeNet和VGG等神经网络中的应用,主要作用在于增加网络深度和进行升维或降维。1x1卷积可以在不改变感受野的情况下引入更多非线性,增强网络表达能力,同时通过调整卷积核数量实现通道的增减,且相比其他尺寸的卷积核,1x1卷积核在内存消耗上更具优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核是 3x3 ,那么,1x1 的卷积核有什么意义呢?

最初应用 1x1 卷积核的神经网络是 Network In Network,然后 GoogLeNet 和 VGG 也不约而同的更正了。

他们在论文中解释,大概有下面 2 个意义。

1、增加网络的深度

这个就比较好理解了,1x1 的卷积核虽小,但也是卷积核,加 1 层卷积,网络深度自然会增加。

其实问题往下挖掘,应该是增加网络深度有什么好处?为什么非要用 1x1 来增加深度呢?其它的不可以吗?

其实,这涉及到感受野的问题,我们知道卷积核越大,它生成的 featuremap 上单个节点的感受野就越大,随着网络深度的增加,越靠后的 featuremap 上的节点感受野也越大。因此特征也越来越抽象。

但有的时候,我们想在不增加感受野的情况下,让网络加深,为的就是引入更多的非线性。

而 1x1 卷积核,恰巧可以办到。

我们知道,卷积后生成图片的尺寸受卷积核的大小和跨度影响,但如果卷积核是 1x1 ,跨度也是 1,那么生成后的图像大小就并没有变化。

但通常一个卷积过程包括一个激活函数,比如 Sigmoid 和 Relu。

所以,在输入不发生尺寸的变化下,却引入了更多的非线性,这将增强神经网络的表达能力。

2、升维或者是降维

大家可以看下面这张图:
在这里插入图片描述

我们可以直观地感受到卷积过程中:卷积后的的 featuremap 通道数是与卷积核的个数相同的

所以,如果

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

frank909

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值