Spark2.x 入门:Spark Streaming 简介

SparkStreaming是构建在Spark上的实时计算框架,扩展了Spark处理大规模流式数据的能力。它可结合批处理和交互查询,适合历史数据和实时数据结合分析的场景。SparkStreaming设计上整合多种输入数据源,如Kafka、Flume等,处理后的数据可存储至文件系统、数据库。主要抽象DStream表示连续数据流,内部实现上按时间片转换为RDD进行处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark Streaming是构建在Spark上的实时计算框架,它扩展了Spark处理大规模流式数据的能力。Spark Streaming可结合批处理和交互查询,适合一些需要对历史数据和实时数据进行结合分析的应用场景。

Spark Streaming设计

Spark Streaming是Spark的核心组件之一,为Spark提供了可拓展、高吞吐、容错的流计算能力。如下图所示,Spark Streaming可整合多种输入数据源,如Kafka、Flume、HDFS,甚至是普通的TCP套接字。经处理后的数据可存储至文件系统、数据库,或显示在仪表盘里。

这里写图片描述

Spark Streaming的基本原理是将实时输入数据流以时间片(秒级)为单位进行拆分,然后经Spark引擎以类似批处理的方式处理每个时间片数据,执行流程如下图所示。

这里写图片描述

Spark Streaming最主要的抽象是DStream(Discretized Stream,离散化数据流),表示连续不断的数据流。在内部实现上,Spark Streaming的输入数据按照时间片(如1秒)分成一段一段的DStream,每一段数据转换为Spark中的RDD,并且对DStream的操作都最终转变为对相应的RDD的操作。例如,下图展示了进行单词统计时,每个时间片的数据(存储句子的RDD)经flatMap操作,生成了存储单词的RDD。整个流式计算可根据业务的需求对这些中间的结果进一步处理,或者存储到外部设备中。

这里写图片描述

Spark Streaming与Storm的对比

Spark Streaming和Storm最大的区别在于,Spark Streaming无法实现毫秒级的流计算,而Storm可以实现毫秒级响应。
Spark Streaming无法实现毫秒级的流计算,是因为其将流数据按批处理窗口大小(通常在0.5~2秒之间)分解为一系列批处理作业,在这个过程中,会产生多个Spark 作业,且每一段数据的处理都会经过Spark DAG图分解、任务调度过程,因此,无法实现毫秒级相应。Spark Streaming难以满足对实时性要求非常高(如高频实时交易)的场景,但足以胜任其他流式准实时计算场景。相比之下,Storm处理的单位为Tuple,只需要极小的延迟。
Spark Streaming构建在Spark上,一方面是因为Spark的低延迟执行引擎(100毫秒左右)可以用于实时计算,另一方面,相比于Storm,RDD数据集更容易做高效的容错处理。此外,Spark Streaming采用的小批量处理的方式使得它可以同时兼容批量和实时数据处理的逻辑和算法,因此,方便了一些需要历史数据和实时数据联合分析的特定应用场合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据AI

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值