POJ - 2893 M × N Puzzle(n*m数码问题+逆序对结论)

本文详细解析了八数码问题的经典解法,探讨了如何通过逆序对判断状态可达性,区分奇偶数矩阵的不同处理方式,并提供了一个高效的归并排序求逆序对的代码实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:点击查看

题目大意:给出一个n*m的数码问题,问是否能到达最终状态

题目分析:对于数码问题,我们先一步一步分析,先简单看一下定义:

八数码的问题描述为:
在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字。棋盘中留有一个空格,空格用0来表示。空格周围的棋子可以移到空格中。要求解的问题是:给出一种初始布局(初始状态)和目标布局,找到一种最少步骤的移动方法,实现从初始布局到目标布局的转变。

八数码问题算是经典bfs问题了,因为是bfs,所以自然可以求出最小步数以及路径输出,之前我也写过博客介绍了,这里就不过多展开讨论了,我们现在讨论的问题没有那么复杂,只是单纯的讨论某个状态能否通过规则操作到达最终状态,也就是判断当前状态是否有解

首先我们先上升为n*n数码问题,n为奇数:

关于证明我也不太会证明,简单说一下结论吧,就是我们将整个n*n-1个数(不包含空格)依次写成一行的一个序列后,逆序对个数的奇偶性相同,必要性的证明:空格左右移动时,转换成的序列显然不变,上下移动时,相当于某个数与它前面或后面的n-1个数交换了位置,因为n是奇数,所以n-1是偶数,所以逆序对的变化也只能是偶数,而最后目标的状态逆序对的数目为0,所以当前状态的逆序对的数目必须为偶数才能达到目标状态,换句话说,若判断两个状态能否到达的条件就是其逆序对数的奇偶性是否一致

现在我们将问题再上升为n*n,n为偶数的情况:

原理同上,只不过空格在上下移动的时候,会和n-1个数交换了位置,因为此时的n为偶数,所以n-1为奇数,所以此时逆序对的变化只能为奇数,而奇数+奇数等于偶数,奇数+偶数等于奇数,所以当n为奇数的时候,此时判断状态之间的关系还需要看空格上下交换了几次位置,换句话说,若判断两个状态能否到达的条件是“逆序对之差”和“两个局面下空格所在的行数之差”的奇偶性是否一致

最后我们将问题上升为n*m,n和m为任意正整数:

通过上面的分析,我们会发现其实答案只与列数有直接的关系,所以我们已经不用管n了,只需要根据m来讨论就好了:

  1. 若m为奇数,则m-1为偶数,判断可达性即判断逆序对数的奇偶性即可
  2. 若m为偶数,则m-1为奇数,判断可达性即判断逆序对数以及空格所差的行数记得奇偶性即可

结论说完之后,那么对于这个题目,我们只需要先求一下逆序对数,然后根据m来分情况讨论一下就好了,注意一下这个题目卡了时间,只能用归并排序求逆序数,而不能用树状数组或线段树来求 

代码:

#include<iostream>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<climits>
#include<cmath>
#include<cctype>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<set>
#include<map>
#include<sstream>
using namespace std;
    
typedef long long LL;
    
const int inf=0x3f3f3f3f;
    
const int N=1e6+100;

int a[N],b[N];
 
int merge_sort(int l,int r)//归并排序
{
	if(l==r)
		return 0;
	int mid=l+r>>1;
	int ans=merge_sort(l,mid)+merge_sort(mid+1,r);
	int p=l,q=mid+1;
	for(int i=l;i<=r;i++)
	{
		if(q>r||p<=mid&&a[p]<=a[q])
			b[i]=a[p++];
		else
		{
			b[i]=a[q++];
			ans+=mid-p+1;
		}
	}
	for(int i=l;i<=r;i++)
		a[i]=b[i];
	return ans;
}

int main()
{
//  freopen("input.txt","r",stdin);
//  ios::sync_with_stdio(false);
	int n,m;
	while(scanf("%d%d",&n,&m)!=EOF&&n+m)
	{
		int cnt=0,zero;
		for(int i=1;i<=n;i++)
			for(int j=1;j<=m;j++)
			{
				int num;
				scanf("%d",&num);
				if(num)
					a[++cnt]=num;
				else
					zero=n-i;
			}
		int ans=merge_sort(1,cnt);
		if(m&1)//若m为奇数
			zero=0; 
		if((ans+zero)&1)//ans和zero奇偶性不同 
			printf("NO\n");
		else
			printf("YES\n");
	}
	 
	
	
	
	
	
	
        
        
        
        
         
        
    return 0;
}

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Frozen_Guardian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值