题目链接:点击查看
题目大意:给出一个n*m的数码问题,问是否能到达最终状态
题目分析:对于数码问题,我们先一步一步分析,先简单看一下定义:
八数码的问题描述为:
在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字。棋盘中留有一个空格,空格用0来表示。空格周围的棋子可以移到空格中。要求解的问题是:给出一种初始布局(初始状态)和目标布局,找到一种最少步骤的移动方法,实现从初始布局到目标布局的转变。
八数码问题算是经典bfs问题了,因为是bfs,所以自然可以求出最小步数以及路径输出,之前我也写过博客介绍了,这里就不过多展开讨论了,我们现在讨论的问题没有那么复杂,只是单纯的讨论某个状态能否通过规则操作到达最终状态,也就是判断当前状态是否有解
首先我们先上升为n*n数码问题,n为奇数:
关于证明我也不太会证明,简单说一下结论吧,就是我们将整个n*n-1个数(不包含空格)依次写成一行的一个序列后,逆序对个数的奇偶性相同,必要性的证明:空格左右移动时,转换成的序列显然不变,上下移动时,相当于某个数与它前面或后面的n-1个数交换了位置,因为n是奇数,所以n-1是偶数,所以逆序对的变化也只能是偶数,而最后目标的状态逆序对的数目为0,所以当前状态的逆序对的数目必须为偶数才能达到目标状态,换句话说,若判断两个状态能否到达的条件就是其逆序对数的奇偶性是否一致
现在我们将问题再上升为n*n,n为偶数的情况:
原理同上,只不过空格在上下移动的时候,会和n-1个数交换了位置,因为此时的n为偶数,所以n-1为奇数,所以此时逆序对的变化只能为奇数,而奇数+奇数等于偶数,奇数+偶数等于奇数,所以当n为奇数的时候,此时判断状态之间的关系还需要看空格上下交换了几次位置,换句话说,若判断两个状态能否到达的条件是“逆序对之差”和“两个局面下空格所在的行数之差”的奇偶性是否一致
最后我们将问题上升为n*m,n和m为任意正整数:
通过上面的分析,我们会发现其实答案只与列数有直接的关系,所以我们已经不用管n了,只需要根据m来讨论就好了:
- 若m为奇数,则m-1为偶数,判断可达性即判断逆序对数的奇偶性即可
- 若m为偶数,则m-1为奇数,判断可达性即判断逆序对数以及空格所差的行数记得奇偶性即可
结论说完之后,那么对于这个题目,我们只需要先求一下逆序对数,然后根据m来分情况讨论一下就好了,注意一下这个题目卡了时间,只能用归并排序求逆序数,而不能用树状数组或线段树来求
代码:
#include<iostream>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<climits>
#include<cmath>
#include<cctype>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<set>
#include<map>
#include<sstream>
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const int N=1e6+100;
int a[N],b[N];
int merge_sort(int l,int r)//归并排序
{
if(l==r)
return 0;
int mid=l+r>>1;
int ans=merge_sort(l,mid)+merge_sort(mid+1,r);
int p=l,q=mid+1;
for(int i=l;i<=r;i++)
{
if(q>r||p<=mid&&a[p]<=a[q])
b[i]=a[p++];
else
{
b[i]=a[q++];
ans+=mid-p+1;
}
}
for(int i=l;i<=r;i++)
a[i]=b[i];
return ans;
}
int main()
{
// freopen("input.txt","r",stdin);
// ios::sync_with_stdio(false);
int n,m;
while(scanf("%d%d",&n,&m)!=EOF&&n+m)
{
int cnt=0,zero;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
int num;
scanf("%d",&num);
if(num)
a[++cnt]=num;
else
zero=n-i;
}
int ans=merge_sort(1,cnt);
if(m&1)//若m为奇数
zero=0;
if((ans+zero)&1)//ans和zero奇偶性不同
printf("NO\n");
else
printf("YES\n");
}
return 0;
}