题目链接:点击查看
题目大意:给出 200 个石头,有一只青蛙要从第 0 个石头跳到第 200 个石头,每次只能跳 1 步或 2 步,显然可行的方案数是一个斐波那契数列,现在可以在两个石头上放置传送门 x -> y ,当青蛙跳到石头 x 上后,会立马传送到石头 y 上,问如何构造传送门,使得从 0 到 200 的方案数恰好外 m
题目分析:看到斐波那契数列,就不难想到齐肯多夫定理,考虑类比于二进制拆分那样,用斐波那契数列将 m 进行拆分,因为 fib[ 44 ] 才刚好大于 1e9,所以剩下了 150 多个位置可以用来进制拆分,首先简单画个图,这个应该不难看出来,每个传送门出去的方案数为 1 ,因为青蛙要么跳一步到达传送门,要么跳两步跳过传送门,所以这样是可行的
如上图所示,每条红线引出去的方案数都为 1
这样一来先倒着预处理一下斐波那契数列,fib[ x ] 的意义为,从第 x 个石头到第 200 个石头的方案数,这样在上面理论的基础上,相应的连边表示拆分即可
有个小细节就是,需要特判一下 0
代码:
//#pragma GCC optimize(2)
//#pragma GCC optimize("Ofast","inline","-ffast-math")
//#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<cassert>
#include<bitset>
#include<unordered_map>
using namespace std;
typedef long long LL;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const int N=2e3+100;
LL fib[210];
void init()
{
fib[200]=fib[199]=1;
for(int i=198;i>=150;i--)
fib[i]=fib[i+1]+fib[i+2];
}
int main()
{
#ifndef ONLINE_JUDGE
// freopen("data.in.txt","r",stdin);
// freopen("data.out.txt","w",stdout);
#endif
// ios::sync_with_stdio(false);
init();
LL n;
while(scanf("%lld",&n)!=EOF)
{
if(n==0)
{
puts("2");
puts("1 1");
puts("2 2");
continue;
}
vector<int>pos;
for(int i=150;i<=199;i++)
if(n>=fib[i])
{
pos.push_back(i);
n-=fib[i];
}
printf("%d\n",pos.size()+1);
for(int i=0;i<pos.size();i++)
printf("%d %d\n",2*i+1,pos[i]);
printf("%d %d\n",pos.size()*2,pos.size()*2);
}
return 0;
}