HihoCoder - 1873 Frog and Portal(构造+进制拆分)

本文介绍了一种使用斐波那契数列和齐肯多夫定理来解决青蛙跳跃问题的方法,通过放置传送门来控制达到目标石头的方案数量,并给出了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:点击查看

题目大意:给出 200 个石头,有一只青蛙要从第 0 个石头跳到第 200 个石头,每次只能跳 1 步或 2 步,显然可行的方案数是一个斐波那契数列,现在可以在两个石头上放置传送门 x -> y ,当青蛙跳到石头 x 上后,会立马传送到石头 y 上,问如何构造传送门,使得从 0 到 200 的方案数恰好外 m

题目分析:看到斐波那契数列,就不难想到齐肯多夫定理,考虑类比于二进制拆分那样,用斐波那契数列将 m 进行拆分,因为 fib[ 44 ] 才刚好大于 1e9,所以剩下了 150 多个位置可以用来进制拆分,首先简单画个图,这个应该不难看出来,每个传送门出去的方案数为 1 ,因为青蛙要么跳一步到达传送门,要么跳两步跳过传送门,所以这样是可行的

如上图所示,每条红线引出去的方案数都为 1 

这样一来先倒着预处理一下斐波那契数列,fib[ x ] 的意义为,从第 x 个石头到第 200 个石头的方案数,这样在上面理论的基础上,相应的连边表示拆分即可

有个小细节就是,需要特判一下 0

代码:

//#pragma GCC optimize(2)
//#pragma GCC optimize("Ofast","inline","-ffast-math")
//#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<cassert>
#include<bitset>
#include<unordered_map>
using namespace std;
       
typedef long long LL;
       
typedef unsigned long long ull;
       
const int inf=0x3f3f3f3f;
     
const int N=2e3+100;

LL fib[210];

void init()
{
	fib[200]=fib[199]=1;
	for(int i=198;i>=150;i--)
		fib[i]=fib[i+1]+fib[i+2];
}

int main()
{
#ifndef ONLINE_JUDGE
//  freopen("data.in.txt","r",stdin);
//  freopen("data.out.txt","w",stdout);
#endif
//  ios::sync_with_stdio(false);
	init();
	LL n;
	while(scanf("%lld",&n)!=EOF)
	{
		if(n==0)
		{
			puts("2");
			puts("1 1");
			puts("2 2");
			continue;
		}
		vector<int>pos;
		for(int i=150;i<=199;i++)
			if(n>=fib[i])
			{
				pos.push_back(i);
				n-=fib[i];
			}
		printf("%d\n",pos.size()+1);
		for(int i=0;i<pos.size();i++)
			printf("%d %d\n",2*i+1,pos[i]);
		printf("%d %d\n",pos.size()*2,pos.size()*2);
	}








   return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Frozen_Guardian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值